BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 24233781)

  • 1. Predicting the functional consequences of somatic missense mutations found in tumors.
    Carter H; Karchin R
    Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations.
    Carter H; Chen S; Isik L; Tyekucheva S; Velculescu VE; Kinzler KW; Vogelstein B; Karchin R
    Cancer Res; 2009 Aug; 69(16):6660-7. PubMed ID: 19654296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants.
    Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP
    Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of computational methods for predicting the effects of missense mutations in human cancers.
    Gnad F; Baucom A; Mukhyala K; Manning G; Zhang Z
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S7. PubMed ID: 23819521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical tools and R software for cancer driver probabilities.
    Parmigiani G; Boca S; Ding J; Trippa L
    Methods Mol Biol; 2014; 1101():113-34. PubMed ID: 24233780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing cancer-associated missense mutations from common polymorphisms.
    Kaminker JS; Zhang Y; Waugh A; Haverty PM; Peters B; Sebisanovic D; Stinson J; Forrest WF; Bazan JF; Seshagiri S; Zhang Z
    Cancer Res; 2007 Jan; 67(2):465-73. PubMed ID: 17234753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the functional consequences of cancer-associated amino acid substitutions.
    Shihab HA; Gough J; Cooper DN; Day IN; Gaunt TR
    Bioinformatics; 2013 Jun; 29(12):1504-10. PubMed ID: 23620363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CanPredict: a computational tool for predicting cancer-associated missense mutations.
    Kaminker JS; Zhang Y; Watanabe C; Zhang Z
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W595-8. PubMed ID: 17537827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.
    Mercatanti A; Lodovichi S; Cervelli T; Galli A
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29069390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.
    Anoosha P; Sakthivel R; Michael Gromiha M
    Biochim Biophys Acta; 2016 Feb; 1862(2):155-65. PubMed ID: 26581171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CanDrA: cancer-specific driver missense mutation annotation with optimized features.
    Mao Y; Chen H; Liang H; Meric-Bernstam F; Mills GB; Chen K
    PLoS One; 2013; 8(10):e77945. PubMed ID: 24205039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of driver and passenger mutations in epidermal growth factor receptor in cancer.
    Anoosha P; Huang LT; Sakthivel R; Karunagaran D; Gromiha MM
    Mutat Res; 2015 Oct; 780():24-34. PubMed ID: 26264175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the oncogenicity of missense mutations reported in the International Agency for Cancer Research (IARC) mutation database on p53.
    Gorlov IP; Gorlova OY; Amos CI
    Hum Mutat; 2005 Nov; 26(5):446-54. PubMed ID: 16173033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene characteristics predicting missense, nonsense and frameshift mutations in tumor samples.
    Gorlov IP; Pikielny CW; Frost HR; Her SC; Cole MD; Strohbehn SD; Wallace-Bradley D; Kimmel M; Gorlova OY; Amos CI
    BMC Bioinformatics; 2018 Nov; 19(1):430. PubMed ID: 30453881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driver Missense Mutation Identification Using Feature Selection and Model Fusion.
    Soliman AT; Meng T; Chen SC; Iyengar SS; Iyengar P; Yordy J; Shyu ML
    J Comput Biol; 2015 Dec; 22(12):1075-85. PubMed ID: 26402258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of germline and somatic microlesion mutational spectra in 17 human tumor suppressor genes.
    Ivanov D; Hamby SE; Stenson PD; Phillips AD; Kehrer-Sawatzki H; Cooper DN; Chuzhanova N
    Hum Mutat; 2011 Jun; 32(6):620-32. PubMed ID: 21432943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting potential cancer genes by integrating network properties, sequence features and functional annotations.
    Liu W; Xie H
    Sci China Life Sci; 2013 Aug; 56(8):751-7. PubMed ID: 23838808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.