These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 24233829)

  • 1. Studying Iridoid Transport in Catharanthus roseus by Grafting.
    Farzana M; Shahsavarani M; De Luca V; Qu Y
    Methods Mol Biol; 2022; 2505():69-77. PubMed ID: 35732937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the Harpagide, Harpagoside, and Verbascoside Content of Field Grown
    Brownstein KJ; Thomas AL; Nguyen HTT; Gang DR; Folk WR
    Metabolites; 2021 Jul; 11(7):. PubMed ID: 34357358
    [No Abstract]   [Full Text] [Related]  

  • 3. Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.).
    Blicharz S; Beemster GTS; Ragni L; De Diego N; Spíchal L; Hernándiz AE; Marczak Ł; Olszak M; Perlikowski D; Kosmala A; Malinowski R
    Plant J; 2021 Jun; 106(5):1338-1355. PubMed ID: 33738886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Phenological Events Affect Chemical Defense of Plant Tissues: Iridoid Glycosides in a Woody Shrub.
    Blanchard M; Bowers MD
    J Chem Ecol; 2020 Feb; 46(2):206-216. PubMed ID: 31907751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz.
    Zhang P; Fuentes S; Wang Y; Deng R; Krstic M; Herderich M; Barlow EW; Howell K
    Front Plant Sci; 2016; 7():859. PubMed ID: 27446104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications.
    Ilc T; Parage C; Boachon B; Navrot N; Werck-Reichhart D
    Front Plant Sci; 2016; 7():509. PubMed ID: 27200002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental Factors and Seasonality Affect the Concentration of Rotundone in Vitis vinifera L. cv. Shiraz Wine.
    Zhang P; Howell K; Krstic M; Herderich M; Barlow EW; Fuentes S
    PLoS One; 2015; 10(7):e0133137. PubMed ID: 26176692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae).
    Quintero C; Bowers MD
    Oecologia; 2012 Feb; 168(2):471-81. PubMed ID: 21913028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of antirrhinoside distribution in the organs of two related Plantaginaceae species with different reproductive strategies.
    Beninger CW; Cloutier RR; Grodzinski B
    J Chem Ecol; 2009 Nov; 35(11):1363-72. PubMed ID: 19949840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata?
    Voitsekhovskaja OV; Koroleva OA; Batashev DR; Knop C; Tomos AD; Gamalei YV; Heldt HW; Lohaus G
    Plant Physiol; 2006 Jan; 140(1):383-95. PubMed ID: 16377750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age.
    Fuchs A; Bowers MD
    J Chem Ecol; 2004 Sep; 30(9):1723-41. PubMed ID: 15586671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phloem loading. A reevaluation of the relationship between plasmodesmatal frequencies and loading strategies.
    Turgeon R; Medville R
    Plant Physiol; 2004 Nov; 136(3):3795-803. PubMed ID: 15516516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-distance phloem transport of glucosinolates in Arabidopsis.
    Chen S; Petersen BL; Olsen CE; Schulz A; Halkier BA
    Plant Physiol; 2001 Sep; 127(1):194-201. PubMed ID: 11553747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloem transport of antirrhinoside, an iridoid glycoside, inAsarina scandens (Scrophulariaceae).
    Gowan E; Lewis BA; Turgeon R
    J Chem Ecol; 1995 Nov; 21(11):1781-8. PubMed ID: 24233829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus.
    Lohaus G; Schwerdtfeger M
    PLoS One; 2014; 9(1):e87689. PubMed ID: 24489951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The iridoid glucoside, antirrhinoside, from Antirrhinum majus L. has differential effects on two generalist insect herbivores.
    Beninger CW; Cloutier RR; Grodzinski B
    J Chem Ecol; 2008 May; 34(5):591-600. PubMed ID: 18414950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of two major Iridoids in different organs of Antirrhinum majus L. at selected stages of development.
    Beninger CW; Cloutier RR; Monteiro MA; Grodzinski B
    J Chem Ecol; 2007 Apr; 33(4):731-47. PubMed ID: 17334922
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.