These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 24234441)

  • 21. A second putative mRNA binding site on the Escherichia coli ribosome.
    Ivanov IG; Alexandrova RA; Dragulev BP; AbouHaidar MG
    Gene; 1995 Jul; 160(1):75-9. PubMed ID: 7628721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation.
    Shaham G; Tuller T
    DNA Res; 2018 Apr; 25(2):195-205. PubMed ID: 29161365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inability of Agrobacterium tumefaciens ribosomes to translate in vivo mRNAs containing non-Shine-Dalgarno translational initiators.
    Golshani A; Xu J; Kolev V; Abouhaidar MG; Ivanov IG
    Z Naturforsch C J Biosci; 2002; 57(3-4):307-12. PubMed ID: 12064732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons.
    Tian T; Salis HM
    Nucleic Acids Res; 2015 Aug; 43(14):7137-51. PubMed ID: 26117546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An additional ribosome-binding site on mRNA of highly expressed genes and a bifunctional site on the colicin fragment of 16S rRNA from Escherichia coli: important determinants of the efficiency of translation-initiation.
    Thanaraj TA; Pandit MW
    Nucleic Acids Res; 1989 Apr; 17(8):2973-85. PubMed ID: 2657653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribosome-binding sites on chloroplast rbcL and psbA mRNAs and light-induced initiation of D1 translation.
    Kim J; Mullet JE
    Plant Mol Biol; 1994 Jun; 25(3):437-48. PubMed ID: 8049369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA.
    Hartz D; McPheeters DS; Green L; Gold L
    J Mol Biol; 1991 Mar; 218(1):99-105. PubMed ID: 2002510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA.
    Andreeva I; Belardinelli R; Rodnina MV
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4411-4416. PubMed ID: 29632209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unstructured 5'-tails act through ribosome standby to override inhibitory structure at ribosome binding sites.
    Sterk M; Romilly C; Wagner EGH
    Nucleic Acids Res; 2018 May; 46(8):4188-4199. PubMed ID: 29420821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic analysis of the effects of translation enhancers in translation initiation.
    Takahashi S; Furusawa H; Shimizu Y; Ueda T; Okahata Y
    Nucleic Acids Symp Ser (Oxf); 2007; (51):45-6. PubMed ID: 18029578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anatomy of Escherichia coli ribosome binding sites.
    Shultzaberger RK; Bucheimer RE; Rudd KE; Schneider TD
    J Mol Biol; 2001 Oct; 313(1):215-28. PubMed ID: 11601857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple elements required for translation of plastid atpB mRNA lacking the Shine-Dalgarno sequence.
    Hirose T; Sugiura M
    Nucleic Acids Res; 2004; 32(11):3503-10. PubMed ID: 15229294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosomal binding to the internal ribosomal entry site of classical swine fever virus.
    Kolupaeva VG; Pestova TV; Hellen CU
    RNA; 2000 Dec; 6(12):1791-807. PubMed ID: 11142379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico analysis of 5'-UTRs highlights the prevalence of Shine-Dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively.
    Srivastava A; Gogoi P; Deka B; Goswami S; Kanaujia SP
    J Theor Biol; 2016 Aug; 402():54-61. PubMed ID: 27155047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trapping the ribosome to control gene expression.
    Boehringer D; Ban N
    Cell; 2007 Sep; 130(6):983-5. PubMed ID: 17889642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring efficiency of translation initiation and elongation from ribosome profiling.
    Szavits-Nossan J; Ciandrini L
    Nucleic Acids Res; 2020 Sep; 48(17):9478-9490. PubMed ID: 32821926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An antisense/target RNA duplex or a strong intramolecular RNA structure 5' of a translation initiation signal blocks ribosome binding: the case of plasmid R1.
    Malmgren C; Engdahl HM; Romby P; Wagner EG
    RNA; 1996 Oct; 2(10):1022-32. PubMed ID: 8849778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction.
    de Smit MH; van Duin J
    J Mol Biol; 1994 Jan; 235(1):173-84. PubMed ID: 8289239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG.
    Brock JE; Pourshahian S; Giliberti J; Limbach PA; Janssen GR
    RNA; 2008 Oct; 14(10):2159-69. PubMed ID: 18755843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.