These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24234757)

  • 1. The effect of structural compositions on the biosorption of phenanthrene and pyrene by tea leaf residue fractions as model biosorbents.
    Xi Z; Chen B
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3318-30. PubMed ID: 24234757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents.
    Xi Z; Chen B
    J Environ Sci (China); 2014 Apr; 26(4):737-48. PubMed ID: 25079403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-solute and bi-solute sorption of phenanthrene and pyrene onto pine needle cuticular fractions.
    Li Y; Chen B; Zhu L
    Environ Pollut; 2010 Jul; 158(7):2478-84. PubMed ID: 20430494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and phenanthrene sorption of tea leaf powders.
    Lin D; Pan B; Zhu L; Xing B
    J Agric Food Chem; 2007 Jul; 55(14):5718-24. PubMed ID: 17579435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark.
    Li Y; Chen B; Zhu L
    Bioresour Technol; 2010 Oct; 101(19):7307-13. PubMed ID: 20578284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption characteristics of phenanthrene and pyrene to surfactant-modified peat from aqueous solution: the contribution of partition and adsorption.
    Zhou Y; Zhang R; Gu X; Zhao Q; Lu J
    Water Sci Technol; 2015; 71(2):296-302. PubMed ID: 25633955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent.
    Chen B; Yuan M; Liu H
    J Hazard Mater; 2011 Apr; 188(1-3):436-42. PubMed ID: 21345579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of PAHs by aspen wood fibers as affected by chemical alterations.
    Huang L; Boving TB; Xing B
    Environ Sci Technol; 2006 May; 40(10):3279-84. PubMed ID: 16749694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark.
    Li Y; Chen B; Zhu L
    Bioresour Technol; 2010 Oct; 101(19):7307-7313. PubMed ID: 20576561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms.
    Du LN; Wang B; Li G; Wang S; Crowley DE; Zhao YH
    J Hazard Mater; 2012 Feb; 205-206():47-54. PubMed ID: 22236947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility.
    Chen B; Johnson EJ; Chefetz B; Zhu L; Xing B
    Environ Sci Technol; 2005 Aug; 39(16):6138-46. PubMed ID: 16173574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons.
    Haftka JJ; Govers HA; Parsons JR
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1070-9. PubMed ID: 19953335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-assisted adsorption of phenol from aqueous solution by using spent black tea leaves.
    Ali A; Bilal M; Khan R; Farooq R; Siddique M
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22920-22930. PubMed ID: 29858994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene.
    ZieliƄska A; Oleszczuk P
    Bioresour Technol; 2015 Sep; 192():618-26. PubMed ID: 26093256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenanthrene sorption to soil humic acid and different humin fractions.
    Wen B; Zhang JJ; Zhang SZ; Shan XQ; Khan SU; Xing B
    Environ Sci Technol; 2007 May; 41(9):3165-71. PubMed ID: 17539521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Changes of
    Krishna Kanamarlapudi SLR; Muddada S
    Pol J Microbiol; 2019 Dec; 68(4):549-558. PubMed ID: 31880898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon.
    Ahn S; Werner D; Karapanagioti HK; McGlothlin DR; Zare RN; Luthy RG
    Environ Sci Technol; 2005 Sep; 39(17):6516-26. PubMed ID: 16190207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous removal of multiple polycyclic aromatic hydrocarbons (PAHs) from urban stormwater using low-cost agricultural/industrial byproducts as sorbents.
    Esfandiar N; Suri R; McKenzie ER
    Chemosphere; 2021 Jul; 274():129812. PubMed ID: 33582536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ determination of the depuration of three- and four-ringed polycyclic aromatic hydrocarbons co-adsorbed onto mangrove leaf surfaces.
    Sun H; Shi J; Guo S; Zhang Y; Duan L
    Environ Pollut; 2016 Jan; 208(Pt B):688-95. PubMed ID: 26561206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.