These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 2423491)
1. Role of the naphthoquinone moiety in the biological activities of sakyomicin A. Take Y; Sawada M; Kunai H; Inouye Y; Nakamura S J Antibiot (Tokyo); 1986 Apr; 39(4):557-63. PubMed ID: 2423491 [TBL] [Abstract][Full Text] [Related]
2. Effects of streptonigrin derivatives and sakyomicin A on the respiration of isolated rat liver mitochondria. Inouye Y; Okada H; Uno J; Arai T; Nakamura S J Antibiot (Tokyo); 1986 Apr; 39(4):550-6. PubMed ID: 2872195 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of inhibition of reverse transcriptase by quinone antibiotics. II. Dependence on putative quinone pocket on the enzyme molecule. Hafuri Y; Takemori E; Oogose K; Inouye Y; Nakamura S; Kitahara Y; Nakahara S; Kubo A J Antibiot (Tokyo); 1988 Oct; 41(10):1471-8. PubMed ID: 2461354 [TBL] [Abstract][Full Text] [Related]
4. Role of single-electron reduction potential in inhibition of reverse transcriptase by streptonigrin and sakyomicin A. Inouye Y; Oogose K; Take Y; Kubo T; Nakamura S J Antibiot (Tokyo); 1987 May; 40(5):702-5. PubMed ID: 2440841 [No Abstract] [Full Text] [Related]
5. Comparative study on biological activities of heterocyclic quinones and streptonigrin. Take Y; Oogose K; Kubo T; Inouye Y; Nakamura S; Kitahara Y; Kubo A J Antibiot (Tokyo); 1987 May; 40(5):679-84. PubMed ID: 2440840 [TBL] [Abstract][Full Text] [Related]
6. Cataract induction by 1,2-naphthoquinone. I. Studies on the redox properties of bovine lens proteins. Kleber E; Kröner R; Elstner EF Z Naturforsch C J Biosci; 1991; 46(3-4):280-4. PubMed ID: 1878111 [TBL] [Abstract][Full Text] [Related]
7. Interaction of benzoquinones with mitochondria interferes with oxidative phosphorylation characteristics. Makawiti DW; Konji VN; Olowookere JO FEBS Lett; 1990 Jun; 266(1-2):26-8. PubMed ID: 2365068 [TBL] [Abstract][Full Text] [Related]
8. [The mechanism of action of a synthetic derivative of 1,4-naphthoquinone on the respiratory chain of liver and heart mitochondria]. Levin GS; Tremasova GIa; Kostova SV; Dregeris IaIa Biokhimiia; 1989 Oct; 54(10):1630-7. PubMed ID: 2574998 [TBL] [Abstract][Full Text] [Related]
9. Respiratory stimulation and generation of superoxide radicals in Pseudomonas aeruginosa by fungal naphthoquinones. Haraguchi H; Yokoyama K; Oike S; Ito M; Nozaki H Arch Microbiol; 1997 Jan; 167(1):6-10. PubMed ID: 9000335 [TBL] [Abstract][Full Text] [Related]
10. Inhibition by sakyomicin A of avian myeloblastosis virus reverse transcriptase and proliferation of AIDS-associated virus (HTLV-III/LAV). Tanaka N; Okabe T; Tanaka N; Take Y; Inouye Y; Nakamura S; Nakashima H; Yamamoto N Jpn J Cancer Res; 1986 Apr; 77(4):324-6. PubMed ID: 2422146 [TBL] [Abstract][Full Text] [Related]
11. DT-diaphorase-catalyzed two-electron reduction of various p-benzoquinone- and 1,4-naphthoquinone epoxides. Brunmark A; Cadenas E; Segura-Aguilar J; Lind C; Ernster L Free Radic Biol Med; 1988; 5(3):133-43. PubMed ID: 3151071 [TBL] [Abstract][Full Text] [Related]
12. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes. Stubberfield CR; Cohen GM Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986 [TBL] [Abstract][Full Text] [Related]
13. Comparative studies of the inhibitory properties of antibiotics on human immunodeficiency virus and avian myeloblastosis virus reverse transcriptases and cellular DNA polymerases. Take Y; Inouye Y; Nakamura S; Allaudeen HS; Kubo A J Antibiot (Tokyo); 1989 Jan; 42(1):107-15. PubMed ID: 2466028 [TBL] [Abstract][Full Text] [Related]
14. A redox cycling mechanism of action for 2,3-dichloro-1,4-naphthoquinone with mitochondrial membranes and the role of sulfhydryl groups. Pritsos CA; Pardini RS Biochem Pharmacol; 1984 Dec; 33(23):3771-7. PubMed ID: 6508833 [TBL] [Abstract][Full Text] [Related]
15. Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes. Ollinger K; Brunmark A J Biol Chem; 1991 Nov; 266(32):21496-503. PubMed ID: 1718980 [TBL] [Abstract][Full Text] [Related]
17. The inhibition by a series of potentially bioreductive naphthoquinones of rat liver mitochondria and sarcoma 180 tumor cell respiration. Biagini RE; Tilka MA; Pardini RS Res Commun Chem Pathol Pharmacol; 1981 Aug; 33(2):293-304. PubMed ID: 7302377 [TBL] [Abstract][Full Text] [Related]
18. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones. Palmeira CM; Wallace KB Toxicol Appl Pharmacol; 1997 Apr; 143(2):338-47. PubMed ID: 9144450 [TBL] [Abstract][Full Text] [Related]
19. Interaction of benzo- and naphthoquinones with soluble glutathione S-transferases from rat liver. Dierickx PJ Pharmacol Res Commun; 1983 Jun; 15(6):581-91. PubMed ID: 6889425 [TBL] [Abstract][Full Text] [Related]
20. 5-Hydroxy-1,4-naphthoquinone (juglone) and 2-hydroxy-1,4-naphthoquinone (lawsone) influence on jack bean urease activity: Elucidation of the difference in inhibition activity. Kot M; Karcz W; Zaborska W Bioorg Chem; 2010 Jun; 38(3):132-7. PubMed ID: 20202666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]