These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2423491)

  • 41. Modifications of cardiac contractility by redox cycling alkylating and mixed redox cycling/alkylating quinones.
    Floreani M; Carpenedo F
    J Pharmacol Exp Ther; 1991 Jan; 256(1):243-8. PubMed ID: 1846415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of superoxide in the interaction of 2,3-dichloro-1,4-naphthoquinone with mitochondrial membranes.
    Pritsos CA; Jensen DE; Pisani D; Pardini RS
    Arch Biochem Biophys; 1982 Aug; 217(1):98-109. PubMed ID: 6289757
    [No Abstract]   [Full Text] [Related]  

  • 43. Relationship between inhibition of mitochondrial respiration by naphthoquinones, their antitumor activity, and their redox potential.
    Pisani DE; Elliott AJ; Hinman DR; Aaronson LM; Pardini RS
    Biochem Pharmacol; 1986 Nov; 35(21):3791-8. PubMed ID: 3778505
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lapachol inhibition of DT-diaphorase (NAD(P)H:quinone dehydrogenase).
    Preusch PC
    Biochem Biophys Res Commun; 1986 Jun; 137(2):781-7. PubMed ID: 3089219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Redox regulation of mitochondrial functional activity by quinones.
    Krylova NG; Kulahava TA; Cheschevik VT; Dremza IK; Semenkova GN; Zavodnik IB
    Physiol Int; 2016 Dec; 103(4):439-458. PubMed ID: 28229632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of vitamin K and naphthoquinones on lipid peroxide formation and oxidative demethylation by liver microsomes.
    Wills ED
    Biochem Pharmacol; 1972 Jul; 21(13):1879-83. PubMed ID: 4405197
    [No Abstract]   [Full Text] [Related]  

  • 47. Mode of action of the bioreductive alkylating agent, 2,3-bis(chloromethyl)-1,4-naphthoquinone.
    Cosby LA; Pardini RS; Biagini RE; Lambert TL; Lin AJ; Huang YM; Hwang KM; Sartorelli AC
    Cancer Res; 1976 Nov; 36(11 Pt 1):4023-31. PubMed ID: 184923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quinoneimines as substrates for quinone reductase (NAD(P)H: (quinone-acceptor)oxidoreductase) and the effect of dicumarol on their cytotoxicity.
    Powis G; See KL; Santone KS; Melder DC; Hodnett EM
    Biochem Pharmacol; 1987 Aug; 36(15):2473-9. PubMed ID: 2440444
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of reverse transcriptase by tyrosinase generated quinones related to levodopa and dopamine.
    Wick MM; Fitzgerald G
    Chem Biol Interact; 1981 Dec; 38(1):99-107. PubMed ID: 6173137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells.
    Ludewig G; Dogra S; Glatt H
    Environ Health Perspect; 1989 Jul; 82():223-8. PubMed ID: 2792044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study of the redox properties of naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) and its glutathionyl conjugate in biological reactions: one- and two-electron enzymatic reduction.
    Ollinger K; Llopis J; Cadenas E
    Arch Biochem Biophys; 1989 Dec; 275(2):514-30. PubMed ID: 2512857
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)(+) regeneration in Bifidobacterium longum.
    Yamazaki S; Kano K; Ikeda T; Isawa K; Kaneko T
    Biochim Biophys Acta; 1999 Aug; 1428(2-3):241-50. PubMed ID: 10434042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure-activity relationships for DT-diaphorase reduction of hypoxic cell directed agents: indoloquinones and diaziridinyl benzoquinones.
    Bailey SM; Suggett N; Walton MI; Workman P
    Int J Radiat Oncol Biol Phys; 1992; 22(4):649-53. PubMed ID: 1544832
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro cytotoxicities of 1,4-naphthoquinone and hydroxylated 1,4-naphthoquinones to replicating cells.
    Babich H; Stern A
    J Appl Toxicol; 1993; 13(5):353-8. PubMed ID: 7505009
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The catecholamine-mediated positive inotropic effect of simple quinones is related to superoxide anion generation.
    Floreani M; Carpenedo F
    J Pharmacol Exp Ther; 1992 Feb; 260(2):468-73. PubMed ID: 1310736
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quinone reductase reaction catalyzed by Streptococcus faecalis NADH peroxidase.
    Marcinkeviciene JA; Blanchard JS
    Biochemistry; 1995 May; 34(20):6621-7. PubMed ID: 7756294
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential mechanisms of induction of the mitochondrial permeability transition by quinones of varying chemical reactivities.
    Henry TR; Wallace KB
    Toxicol Appl Pharmacol; 1995 Oct; 134(2):195-203. PubMed ID: 7570595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolism of simple quinones in guinea pig and rat cardiac tissue.
    Floreani M; Carpenedo F
    Gen Pharmacol; 1995 Dec; 26(8):1757-64. PubMed ID: 8745166
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the photosystem I reaction center.
    Biggins J
    Biochemistry; 1990 Aug; 29(31):7259-64. PubMed ID: 2207105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The effect of isomeric alkyl (C19--C25) methoxybenzoquinones on mitochondrial respiration].
    Nenashev VA; Pridachina NN; Batrakov SG
    Izv Akad Nauk Ser Biol; 1992; (3):475-9. PubMed ID: 1304855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.