These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 2423491)
81. Biochemical studies on quinone derivatives. II. Effects of naturally occurring benzoquinone derivatives on the respiration of intact rat liver mitochondria. Ozawa H; Natori S; Momose K Chem Pharm Bull (Tokyo); 1967 Aug; 15(8):1095-100. PubMed ID: 5583658 [No Abstract] [Full Text] [Related]
82. Mechanism of Action and Implication of Naphthoquinone as Potent Anti-trypanosomal Drugs. Rani R; Sethi K; Gupta S; Varma RS; Kumar R Curr Top Med Chem; 2022; 22(25):2087-2105. PubMed ID: 36098414 [TBL] [Abstract][Full Text] [Related]
83. The role of redox cycling versus arylation in quinone-induced mitochondrial dysfunction: a mechanistic approach in classifying reactive toxicants. Henry TR; Wallace KB SAR QSAR Environ Res; 1995; 4(2-3):97-108. PubMed ID: 8765905 [TBL] [Abstract][Full Text] [Related]
84. Redox cycling of o-naphthoquinones in trypanosomatids. Superoxide and hydrogen peroxide production. Molina Portela MP; Fernandez Villamil SH; Perissinotti LJ; Stoppani AO Biochem Pharmacol; 1996 Dec; 52(12):1875-82. PubMed ID: 8951346 [TBL] [Abstract][Full Text] [Related]
85. Reactive quinones differentially regulate SAPK/JNK and p38/mHOG stress kinases. Seanor KL; Cross JV; Nguyen SM; Yan M; Templeton DJ Antioxid Redox Signal; 2003 Feb; 5(1):103-13. PubMed ID: 12626122 [TBL] [Abstract][Full Text] [Related]
86. [Studies on inhibitors of cholesterol biosynthesis. II. Effects of benzoquinone and naphthoquinone derivatives on the incorporation of acetate-1-14C into cholesterol in rat liver homogenates]. Ozawa H; Ichikawa H Yakugaku Zasshi; 1970 Apr; 90(4):480-5. PubMed ID: 5463481 [No Abstract] [Full Text] [Related]
87. [Regulation of 1-dehydrogenation and 20 beta-reduction of ketosteroids by microorganisms]. Gotovtseva VA; Korovkina AS Mikrobiologiia; 1975; 44(6):1010-5. PubMed ID: 1214603 [TBL] [Abstract][Full Text] [Related]
88. [The effect of nitrogen-containing derivatives of 1,4-naphthoquinone on mitochondrial lipid peroxidation]. Shneĭvaĭs VB; Drulle AIa; Dregeris IaIa; Levin GS Vopr Med Khim; 1992; 38(6):49-52. PubMed ID: 1298133 [TBL] [Abstract][Full Text] [Related]
90. Quinone induced stimulation of hexose monophosphate shunt activity in the guinea pig lens: role of zeta-crystallin. Rao P; Zigler JS Biochim Biophys Acta; 1992 Mar; 1116(1):75-81. PubMed ID: 1540627 [TBL] [Abstract][Full Text] [Related]
91. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Demir Y Drug Dev Res; 2020 Aug; 81(5):628-636. PubMed ID: 32232985 [TBL] [Abstract][Full Text] [Related]
92. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Rahman MM; Islam MR; Akash S; Shohag S; Ahmed L; Supti FA; Rauf A; Aljohani ASM; Al Abdulmonem W; Khalil AA; Sharma R; Thiruvengadam M Chem Biol Interact; 2022 Dec; 368():110198. PubMed ID: 36179774 [TBL] [Abstract][Full Text] [Related]
93. Juglone: A Versatile Natural Platform for Obtaining New Bioactive Compounds. Dos S Moreira C; Santos TB; Freitas RHCN; Pacheco PAF; da Rocha DR Curr Top Med Chem; 2021; 21(22):2018-2045. PubMed ID: 34348624 [TBL] [Abstract][Full Text] [Related]
94. Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases. Ishikawa T; Eguchi Y; Igarashi M; Okajima T; Mita K; Yamasaki Y; Sumikura K; Okumura T; Tabuchi Y; Hayashi C; Pasqua M; Coluccia M; Prosseda G; Colonna B; Kohayakawa C; Tani A; Haruta JI; Utsumi R J Antibiot (Tokyo); 2024 Aug; 77(8):522-532. PubMed ID: 38918599 [TBL] [Abstract][Full Text] [Related]
95. Study on structure-activity relationship of vitamin K derivatives: Conversion of the naphthoquinone part into another aromatic ring and evaluation of their neuronal differentiation-inducing activity. Yoshimura H; Hirota Y; Soda S; Okazeri M; Takagi Y; Takeuchi A; Tode C; Kamao M; Osakabe N; Suhara Y Bioorg Med Chem Lett; 2020 Apr; 30(8):127059. PubMed ID: 32127260 [TBL] [Abstract][Full Text] [Related]
96. Characteristics of juglone (5-hydroxy-1,4,-naphthoquinone) using voltammetry and spectrophotometric methods. Masek A; Chrzescijanska E; Latos-Brozio M; Zaborski M Food Chem; 2019 Dec; 301():125279. PubMed ID: 31377612 [TBL] [Abstract][Full Text] [Related]
97. Characterization of 2,3-bis(chloromethyl)-1,4-naphthoquinone induced mitochondrial swelling. Pardini RS; Tilka MA; Pritsos CA; Lin AJ; Sartorelli AC Chem Biol Interact; 1981 May; 35(2):241-53. PubMed ID: 7214604 [TBL] [Abstract][Full Text] [Related]
98. Toxicity of 2,3-dialkyl-1,4-naphthoquinones in rats: comparison with cytotoxicity in vitro. Munday R; Smith BL; Munday CM Free Radic Biol Med; 1995 Dec; 19(6):759-65. PubMed ID: 8582648 [TBL] [Abstract][Full Text] [Related]
99. 1,4-naphthoquinones: from oxidative damage to cellular and inter-cellular signaling. Klotz LO; Hou X; Jacob C Molecules; 2014 Sep; 19(9):14902-18. PubMed ID: 25232709 [TBL] [Abstract][Full Text] [Related]
100. Degradation of 1,4-naphthoquinones by Pseudomonas putida. Müller U; Lingens F Biol Chem Hoppe Seyler; 1988 Sep; 369(9):1031-43. PubMed ID: 3228489 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]