BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 24235314)

  • 1. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor.
    Falkowski P; Jeznach K
    J Neuroeng Rehabil; 2024 Feb; 21(1):22. PubMed ID: 38342919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of human-machine synchronization control for active rehabilitation using an inertia sensor.
    Song Z; Guo S; Xiao N; Gao B; Shi L
    Sensors (Basel); 2012 Nov; 12(12):16046-59. PubMed ID: 23443366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography.
    Tu P; Li J; Wang H
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loading Recognition for Lumbar Exoskeleton Based on Multi-Channel Surface Electromyography From Low Back Muscles.
    Jiang N; Wang L; Wang D; Fang P; Wu X; Li G
    IEEE Trans Biomed Eng; 2024 Jul; 71(7):2154-2162. PubMed ID: 38324444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.
    Lobo-Prat J; Nizamis K; Janssen MMHP; Keemink AQL; Veltink PH; Koopman BFJM; Stienen AHA
    J Neuroeng Rehabil; 2017 Jul; 14(1):73. PubMed ID: 28701169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a machine-learning-driven active-passive upper-limb exoskeleton robot: Experimental human-in-the-loop study.
    Nasr A; Hunter J; Dickerson CR; McPhee J
    Wearable Technol; 2023; 4():e13. PubMed ID: 38487766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Real-Time Control Method for Upper Limb Exoskeleton Based on Active Torque Prediction Model.
    Li S; Zhang L; Meng Q; Yu H
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38136032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Motor Learning Effects Using a Hybrid Rehabilitation System Based on Motion Estimation.
    Takenaka K; Shima K; Shimatani K
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Preliminary Usability Study of Integrated Electronic Tattoo Surface Electromyography (sEMG) Sensors.
    Lim J; Sun M; Liu JZ; Tan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research of intent recognition in rehabilitation robots: a systematic review.
    Luo S; Meng Q; Li S; Yu H
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1307-1318. PubMed ID: 36695473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of muscle fatigue on electromyogram-kinematic correlation during robot-assisted upper limb training.
    Poyil AT; Steuber V; Amirabdollahian F
    J Rehabil Assist Technol Eng; 2020; 7():2055668320903014. PubMed ID: 32206337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Motion Intention Prediction Using sEMG for Upper-Limb Rehabilitation: A Systematic Review of Model-Based and Model-Free Approaches.
    Wei Z; Zhang ZQ; Xie SQ
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1487-1504. PubMed ID: 38557618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wearable system to assist impaired-neck patients: Design and evaluation.
    Ghasemi A; Sadedel M; Moghaddam MM
    Proc Inst Mech Eng H; 2024 Jan; 238(1):63-77. PubMed ID: 38031465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wearable Upper Limb Exoskeleton System and Intelligent Control Strategy.
    Wang Q; Chen C; Mu X; Wang H; Wang Z; Xu S; Guo W; Wu X; Li W
    Biomimetics (Basel); 2024 Feb; 9(3):. PubMed ID: 38534814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.