These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 24235314)

  • 21. Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton.
    McDonald CG; Dennis TA; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():164-169. PubMed ID: 28813812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feedforward model based arm weight compensation with the rehabilitation robot ARMin.
    Just F; Ozen O; Tortora S; Riener R; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force].
    Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot.
    Kiguchi K; Hayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6679-82. PubMed ID: 24111275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power-assistive finger exoskeleton with a palmar opening at the fingerpad.
    Heo P; Kim J
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2688-97. PubMed ID: 24860025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Control Scheme to Minimize Muscle Energy for Power Assistant Robotic Systems Under Unknown External Perturbation.
    Lee J; Kim M; Kim K
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2313-2327. PubMed ID: 28692980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gravity compensation of an upper extremity exoskeleton.
    Moubarak S; Pham MT; Moreau R; Redarce T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial.
    Sullivan JL; Bhagat NA; Yozbatiran N; Paranjape R; Losey CG; Grossman RG; Contreras-Vidal JL; Francisco GE; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():122-127. PubMed ID: 28813805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface EMG pattern recognition for real-time control of a wrist exoskeleton.
    Khokhar ZO; Xiao ZG; Menon C
    Biomed Eng Online; 2010 Aug; 9():41. PubMed ID: 20796304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement.
    Caimmi M; Visani E; Digiacomo F; Scano A; Chiavenna A; Gramigna C; Molinari Tosatti L; Franceschetti S; Molteni F; Panzica F
    Biomed Res Int; 2016; 2016():7051340. PubMed ID: 27057546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
    Kang HB; Wang JH
    ISA Trans; 2013 Nov; 52(6):844-52. PubMed ID: 23906739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control.
    Ren H; Liu T; Wang J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP.
    Fan Y; Yin Y
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3314-21. PubMed ID: 23771306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.