These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24235319)

  • 61. An automated, electronic assessment tool can accurately classify older adult postural stability.
    Johnson L; Fry A; Dehbandi B; Rubin L; Halem M; Barachant A; Smeragliuolo AH; Putrino D
    J Biomech; 2019 Aug; 93():6-10. PubMed ID: 31221456
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Diagnostic Accuracy of the Berg Balance Scale in Predicting Falls.
    Park SH; Lee YS
    West J Nurs Res; 2017 Nov; 39(11):1502-1525. PubMed ID: 27784833
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Estimation of temporal gait parameters using Bayesian models on acceleration signals.
    López-Nava IH; Muñoz-Meléndez A; Pérez Sanpablo AI; Alessi Montero A; Quiñones Urióstegui I; Núñez Carrera L
    Comput Methods Biomech Biomed Engin; 2016; 19(4):396-403. PubMed ID: 25876180
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry.
    Caby B; Kieffer S; de Saint Hubert M; Cremer G; Macq B
    Biomed Eng Online; 2011 Jan; 10():1. PubMed ID: 21244718
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Automatic and Efficient Fall Risk Assessment Based on Machine Learning.
    Eichler N; Raz S; Toledano-Shubi A; Livne D; Shimshoni I; Hel-Or H
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214471
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains.
    Sejdić E; Lowry KA; Bellanca J; Redfern MS; Brach JS
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):603-12. PubMed ID: 23751971
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of the Tinetti score and fall risk assessment via accelerometry-based movement analysis.
    Rivolta MW; Aktaruzzaman M; Rizzo G; Lafortuna CL; Ferrarin M; Bovi G; Bonardi DR; Caspani A; Sassi R
    Artif Intell Med; 2019 Apr; 95():38-47. PubMed ID: 30195985
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison of Accelerometry-Based Features for Fall Risk Assessment Measured From Two Sensor Locations.
    Immonen M; Simila H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2076-2079. PubMed ID: 30440811
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Measurement of accelerometry-based gait parameters in people with and without dementia in the field: a technical feasibility study.
    Gietzelt M; Wolf KH; Kohlmann M; Marschollek M; Haux R
    Methods Inf Med; 2013; 52(4):319-25. PubMed ID: 23807731
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Automatic vs. clinical assessment of fall risk in older individuals: A proof of concept.
    Rivolta MW; Aktaruzzaman M; Rizzo G; Lafortuna CL; Ferrarin M; Bovi G; Bonardi DR; Sassi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6935-8. PubMed ID: 26737887
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Classifying step and spin turns using wireless gyroscopes and implications for fall risk assessments.
    Fino PC; Frames CW; Lockhart TE
    Sensors (Basel); 2015 May; 15(5):10676-85. PubMed ID: 25954950
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning.
    Martinez M; De Leon PL
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):144-150. PubMed ID: 30932855
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Threshold Berg balance scale scores for gait-aid use in elderly subjects: a secondary analysis.
    Stevenson TJ; Connelly DM; Murray JM; Huggett D; Overend T
    Physiother Can; 2010; 62(2):133-40. PubMed ID: 21359045
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gait Evaluation Using Procrustes and Euclidean Distance Matrix Analysis.
    Anwary AR; Yu H; Vassallo M
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):2021-2029. PubMed ID: 30418928
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Correlation between accelerometry and clinical balance testing in stroke.
    Chung J; Kim S; Yang Y
    J Phys Ther Sci; 2016 Aug; 28(8):2260-3. PubMed ID: 27630409
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predictive Walking-Age Health Analyzer.
    Mandal P; Tank K; Mondal T; Chen CH; Deen MJ
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):363-374. PubMed ID: 28207403
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mobile Fall Risk Assessment Solution for Daily-Life Settings.
    Simila H; Immonen M; Niemirepo T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1530-1533. PubMed ID: 30440684
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A study of gait acceleration and synchronisation in healthy adult subjects.
    Yoneyama M
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1542-52. PubMed ID: 23342965
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cut-off values and sub-items of the Berg Balance Scale for walking-aid use in hospitalized older adults with a hip fracture: a retrospective analysis.
    Kobayashi S; Miyata K; Tamura S; Takeda R; Iwamoto H
    Physiother Theory Pract; 2023 Jul; 39(7):1504-1512. PubMed ID: 35132914
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fall prediction using decision tree analysis in acute care units.
    Tamura S; Kobayashi M; Saito Y; ; Asakura T; Usuda S
    J Phys Ther Sci; 2020 Nov; 32(11):722-728. PubMed ID: 33281287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.