BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 24236153)

  • 1. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.
    Mackin KE; Carter GP; Howarth P; Rood JI; Lyras D
    PLoS One; 2013; 8(11):e79666. PubMed ID: 24236153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates.
    Anjuwon-Foster BR; Maldonado-Vazquez N; Tamayo R
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735765
    [No Abstract]   [Full Text] [Related]  

  • 3. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA.
    Rosenbusch KE; Bakker D; Kuijper EJ; Smits WK
    PLoS One; 2012; 7(10):e48608. PubMed ID: 23119071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production.
    Underwood S; Guan S; Vijayasubhash V; Baines SD; Graham L; Lewis RJ; Wilcox MH; Stephenson K
    J Bacteriol; 2009 Dec; 191(23):7296-305. PubMed ID: 19783633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

  • 6. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe.
    Warny M; Pepin J; Fang A; Killgore G; Thompson A; Brazier J; Frost E; McDonald LC
    Lancet; 2005 Sep 24-30; 366(9491):1079-84. PubMed ID: 16182895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G
    J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of a non-sporulating secondary phenotype in Clostridium (Clostridioides) difficile ribotype 078 isolated from humans and animals.
    Connor MC; McGrath JW; McMullan G; Marks N; Guelbenzu M; Fairley DJ
    Sci Rep; 2019 Sep; 9(1):13722. PubMed ID: 31548637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models.
    Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J
    BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile.
    Carter GP; Douce GR; Govind R; Howarth PM; Mackin KE; Spencer J; Buckley AM; Antunes A; Kotsanas D; Jenkin GA; Dupuy B; Rood JI; Lyras D
    PLoS Pathog; 2011 Oct; 7(10):e1002317. PubMed ID: 22022270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes.
    Sirard S; Valiquette L; Fortier LC
    J Clin Microbiol; 2011 Dec; 49(12):4040-6. PubMed ID: 21956985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile.
    Saujet L; Monot M; Dupuy B; Soutourina O; Martin-Verstraete I
    J Bacteriol; 2011 Jul; 193(13):3186-96. PubMed ID: 21572003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile.
    Edwards AN; Willams CL; Pareek N; McBride SM; Tamayo R
    mSphere; 2021 Dec; 6(6):e0091921. PubMed ID: 34878288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR.
    El Meouche I; Peltier J; Monot M; Soutourina O; Pestel-Caron M; Dupuy B; Pons JL
    PLoS One; 2013; 8(12):e83748. PubMed ID: 24358307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.
    McKee RW; Mangalea MR; Purcell EB; Borchardt EK; Tamayo R
    J Bacteriol; 2013 Nov; 195(22):5174-85. PubMed ID: 24039264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
    Edwards AN; Anjuwon-Foster BR; McBride SM
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862746
    [No Abstract]   [Full Text] [Related]  

  • 18. Emergence of Clostridium difficile ribotype 027 in Korea.
    Kim H; Lee Y; Moon HW; Lim CS; Lee K; Chong Y
    Korean J Lab Med; 2011 Jul; 31(3):191-6. PubMed ID: 21779194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxin B is essential for virulence of Clostridium difficile.
    Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI
    Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production.
    Cartman ST; Kelly ML; Heeg D; Heap JT; Minton NP
    Appl Environ Microbiol; 2012 Jul; 78(13):4683-90. PubMed ID: 22522680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.