These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24236225)

  • 1. Non-Mydriatic Confocal Retinal Imaging Using a Digital Light Projector.
    Muller MS; Elsner AE; Ozawa GY
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8567():. PubMed ID: 24236225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-mydriatic confocal retinal imaging using a digital light projector.
    Muller MS; Green JJ; Baskaran K; Ingling AW; Clendenon JL; Gast TJ; Elsner AE
    Proc SPIE Int Soc Opt Eng; 2015 Feb; 9376():. PubMed ID: 26877576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pico Projector Source for Confocal Fluorescence and Ophthalmic Imaging.
    Muller MS
    Proc SPIE Int Soc Opt Eng; 2012 Sep; 8254():. PubMed ID: 24236223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source.
    Muller MS; Elsner AE
    Proc SPIE Int Soc Opt Eng; 2018 Feb; 10546():. PubMed ID: 29899586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Line-scanning confocal microendoscope for nuclear morphometry imaging.
    Tang Y; Carns J; Richards-Kortum RR
    J Biomed Opt; 2017 Nov; 22(11):1-6. PubMed ID: 29129041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple differential digital confocal aperture to improve axial response of line-scanning confocal microendoscopes.
    Tang Y; Kortum A; Vohra I; Carns J; Anandasabapathy S; Richards-Kortum R
    Opt Lett; 2019 Sep; 44(18):4519-4522. PubMed ID: 31517920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A line scanning confocal fluorescent microscope using a CMOS rolling shutter as an adjustable aperture.
    Mei E; Fomitchov PA; Graves R; Campion M
    J Microsc; 2012 Sep; 247(3):269-76. PubMed ID: 22906014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration Detection and Degraded Image Restoration of Space Camera Based on Correlation Imaging of Rolling-Shutter CMOS.
    Liu H; Lv H; Han C; Zhao Y
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanned light sheet microscopy with confocal slit detection.
    Baumgart E; Kubitscheck U
    Opt Express; 2012 Sep; 20(19):21805-14. PubMed ID: 23037300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable ultra-widefield fundus camera for multispectral imaging of the retina and choroid.
    Toslak D; Son T; Erol MK; Kim H; Kim TH; Chan RVP; Yao X
    Biomed Opt Express; 2020 Nov; 11(11):6281-6292. PubMed ID: 33282490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Line scanning, fiber bundle fluorescence HiLo endomicroscopy with confocal slit detection.
    Zhang H; Vyas K; Yang GZ
    J Biomed Opt; 2019 Nov; 24(11):1-7. PubMed ID: 31724344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of an inexpensive, hand-held fundus camera through modification of a consumer "point-and-shoot" camera.
    Tran K; Mendel TA; Holbrook KL; Yates PA
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7600-7. PubMed ID: 23049089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-accuracy projector calibration method for fringe projection profilometry considering perspective transformation.
    Yu J; Gao N; Meng Z; Zhang Z
    Opt Express; 2021 May; 29(10):15053-15066. PubMed ID: 33985213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector.
    Gavryusev V; Sancataldo G; Ricci P; Montalbano A; Fornetto C; Turrini L; Laurino A; Pesce L; de Vito G; Tiso N; Vanzi F; Silvestri L; Pavone FS
    J Biomed Opt; 2019 Oct; 24(10):1-6. PubMed ID: 31674164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital micromirror device based ophthalmoscope with concentric circle scanning.
    Damodaran M; Vienola KV; Braaf B; Vermeer KA; de Boer JF
    Biomed Opt Express; 2017 May; 8(5):2766-2780. PubMed ID: 28663905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of digital retinal image quality among photographers with different levels of training using a non-mydriatic fundus camera.
    Maberley D; Morris A; Hay D; Chang A; Hall L; Mandava N
    Ophthalmic Epidemiol; 2004 Jul; 11(3):191-7. PubMed ID: 15370551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera.
    Jin K; Lu H; Su Z; Cheng C; Ye J; Qian D
    BMC Ophthalmol; 2017 Jun; 17(1):89. PubMed ID: 28610611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of illumination spectrum and eye pigmentation on image quality from a fundus camera using transscleral illumination.
    Stepanov A; Thorstensen J; Tschudi J
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34240587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving nuclear morphometry imaging with real-time and low-cost line-scanning confocal microendoscope.
    Tang Y; Kortum A; Vohra I; Othman M; Dhingra S; Mansour N; Carns J; Anandasabapathy S; Richards-Kortum R
    Opt Lett; 2019 Feb; 44(3):654-657. PubMed ID: 30702702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation design of a wearable see-through retinal projector.
    Sun WS; Tien CL; Chiang YC; Pan JW
    Appl Opt; 2015 May; 54(14):4485-94. PubMed ID: 25967506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.