These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 24236720)

  • 41. Developing pyrrole-derived antimycobacterial agents: a rational lead optimization approach.
    Biava M; Porretta GC; Poce G; Battilocchio C; Alfonso S; de Logu A; Manetti F; Botta M
    ChemMedChem; 2011 Apr; 6(4):593-9. PubMed ID: 21341373
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Filling the pipeline - new drugs for an old disease.
    Stehr M; Elamin AA; Singh M
    Curr Top Med Chem; 2014; 14(1):110-29. PubMed ID: 24236723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent progress on pyrazole scaffold-based antimycobacterial agents.
    Keri RS; Chand K; Ramakrishnappa T; Nagaraja BM
    Arch Pharm (Weinheim); 2015 May; 348(5):299-314. PubMed ID: 25820461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances and challenges in drug design against tuberculosis: application of in silico approaches.
    Aleksandrov A; Myllykallio H
    Expert Opin Drug Discov; 2019 Jan; 14(1):35-46. PubMed ID: 30477360
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel targets in M. tuberculosis: search for new drugs.
    Lamichhane G
    Trends Mol Med; 2011 Jan; 17(1):25-33. PubMed ID: 21071272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development.
    Poce G; Cocozza M; Consalvi S; Biava M
    Eur J Med Chem; 2014 Oct; 86():335-51. PubMed ID: 25173852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vitamins Based Novel Target Pathways/Molecules as Possible Emerging Drug Targets for the Management of Tuberculosis.
    Sharma A; Jain K; Flora SJS
    Med Chem; 2018; 14(3):212-224. PubMed ID: 29110620
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New perspectives on the treatment of mycobacterial infections using antibiotics.
    He Y; Fan A; Han M; Zhang Y; Tong Y; Zheng G; Zhu S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4197-4209. PubMed ID: 32185432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New perspectives on natural products in TB drug research.
    Pauli GF; Case RJ; Inui T; Wang Y; Cho S; Fischer NH; Franzblau SG
    Life Sci; 2005 Dec; 78(5):485-94. PubMed ID: 16243360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of N-Benzylated Indole Mannich Bases as Potential Anti TB Agents by Using Computational Studies and Molecular Hybridization Technique.
    Kumar Muthyala MK; Jamullamudi RN; Sangeeta GPV; Kurre PN
    Curr Comput Aided Drug Des; 2018; 14(3):200-206. PubMed ID: 29692260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DFT based QSAR/QSPR models in the development of novel anti-tuberculosis drugs targeting Mycobacterium tuberculosis.
    Rajkhowa S; Deka RC
    Curr Pharm Des; 2014; 20(27):4455-73. PubMed ID: 24245759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery.
    Sellamuthu S; Singh M; Kumar A; Singh SK
    Expert Opin Ther Targets; 2017 Jun; 21(6):559-570. PubMed ID: 28472892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mycobacterium tuberculosis-Secreted Tyrosine Phosphatases as Targets Against Tuberculosis: Exploring Natural Sources in Searching for New Drugs.
    Mascarello A; Chiaradia-Delatorre LD; Mori M; Terenzi H; Botta B
    Curr Pharm Des; 2016; 22(12):1561-9. PubMed ID: 26759082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.
    Farah SI; Abdelrahman AA; North EJ; Chauhan H
    Assay Drug Dev Technol; 2016; 14(1):29-38. PubMed ID: 26565779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New tuberculostatic agents targeting nucleic acid biosynthesis: drug design using QSAR approaches.
    Bueno RV; Braga RC; Segretti ND; Ferreira EI; Trossini GH; Andrade CH
    Curr Pharm Des; 2014; 20(27):4474-85. PubMed ID: 24245758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Drug Discovery for
    Ejalonibu MA; Ogundare SA; Elrashedy AA; Ejalonibu MA; Lawal MM; Mhlongo NN; Kumalo HM
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drug development against tuberculosis: Impact of alkaloids.
    Mishra SK; Tripathi G; Kishore N; Singh RK; Singh A; Tiwari VK
    Eur J Med Chem; 2017 Sep; 137():504-544. PubMed ID: 28628823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio.
    Palomino JC; Martin A
    Curr Med Chem; 2013; 20(30):3785-96. PubMed ID: 23862617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of novel gyrase B inhibitors as potential anti-TB drugs: homology modelling, hybrid virtual screening and molecular dynamics simulations.
    Maharaj Y; Soliman ME
    Chem Biol Drug Des; 2013 Aug; 82(2):205-15. PubMed ID: 23614896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.