These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 24237158)

  • 21. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification, characterization and investigations of key factors controlling the transport of modified nano zero-valent iron (nZVI) in porous media.
    Saha AK; Sinha A; Pasupuleti S
    Environ Technol; 2019 May; 40(12):1543-1556. PubMed ID: 29319455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.
    Saleh N; Kim HJ; Phenrat T; Matyjaszewski K; Tilton RD; Lowry GV
    Environ Sci Technol; 2008 May; 42(9):3349-55. PubMed ID: 18522117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of polymer stabilized nano-scale zero-valent iron in porous media.
    Mondal PK; Furbacher PD; Cui Z; Krol MM; Sleep BE
    J Contam Hydrol; 2018 May; 212():65-77. PubMed ID: 29223368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.
    HonetschlÄgerová L; Janouškovcová P; Kubal M
    Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.
    Li H; Zhao YS; Han ZT; Hong M
    Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC).
    Shi J; Wang J; Wang W; Teng W; Zhang WX
    J Environ Sci (China); 2019 Jul; 81():28-33. PubMed ID: 30975326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads.
    Chang J; Woo H; Ko MS; Lee J; Lee S; Yun ST; Lee S
    J Hazard Mater; 2015 Aug; 293():30-6. PubMed ID: 25819991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Column study for the evaluation of the transport properties of polyphenol-coated nanoiron.
    Mystrioti C; Papassiopi N; Xenidis A; Dermatas D; Chrysochoou M
    J Hazard Mater; 2015 Jan; 281():64-69. PubMed ID: 24953183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and Dynamic Aggregation of Bare and Stabilized Zero-Valent Iron Nanoparticles under Variable Solution Chemistry.
    Ibrahim HM; Awad M; Al-Farraj AS; Al-Turki AM
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31978987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhamnolipids as Green Stabilizers of nZVI and Application in the Removal of Nitrate From Simulated Groundwater.
    Moura CC; Salazar-Bryam AM; Piazza RD; Carvalho Dos Santos C; Jafelicci M; Marques RFC; Contiero J
    Front Bioeng Biotechnol; 2022; 10():794460. PubMed ID: 35519607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection.
    Krol MM; Oleniuk AJ; Kocur CM; Sleep BE; Bennett P; Xiong Z; O'Carroll DM
    Environ Sci Technol; 2013 Jul; 47(13):7332-40. PubMed ID: 23725414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of nanoscale zero-valent iron in saturated porous media: Effects of grain size, surface metal oxides, and sulfidation.
    Chen B; Lv N; Xu W; Gong L; Sun T; Liang L; Gao B; He F
    Chemosphere; 2023 Feb; 313():137512. PubMed ID: 36495971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms.
    Yoon H; Pangging M; Jang MH; Hwang YS; Chang YS
    Ecotoxicol Environ Saf; 2018 Nov; 163():436-443. PubMed ID: 30075446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.
    Kanel SR; Choi H
    Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport of nanoscale zero-valent iron in the presence of rhamnolipid.
    Abbasi A; Qi L; Chen G
    Sci Total Environ; 2024 Jun; 927():172279. PubMed ID: 38588747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity.
    Yan W; Herzing AA; Li XQ; Kiely CJ; Zhang WX
    Environ Sci Technol; 2010 Jun; 44(11):4288-94. PubMed ID: 20446741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.
    Dong H; Lo IM
    Water Res; 2013 May; 47(7):2489-96. PubMed ID: 23466217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.