BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2423739)

  • 21. Calmodulin distribution and Ca2+ transport in the erythrocytes of patients with essential hypertension.
    Postnov YuV ; Orlov SN; Reznikova MB; Rjazhsky GG; Pokudin NI
    Clin Sci (Lond); 1984 Apr; 66(4):459-63. PubMed ID: 6321088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A spectrin-dependent ATPase of the human erythrocyte membrane.
    Baskin GS; Langdon RG
    J Biol Chem; 1981 Jun; 256(11):5428-35. PubMed ID: 6113237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Ca2+-pump of sickle cell plasma membranes. Purification and reconstitution of the ATPase enzyme.
    Niggli V; Adunyah ES; Cameron BF; Bababunmi EA; Carafoli E
    Cell Calcium; 1982 May; 3(2):131-51. PubMed ID: 6126277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium ATPase in erythrocytes of spontaneously hypertensive rats of the Milan strain.
    Vezzoli G; Elli AA; Tripodi G; Bianchi G; Carafoli E
    J Hypertens; 1985 Dec; 3(6):645-8. PubMed ID: 2935571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca(2+)-ATPase from chicken (Gallus domesticus) erythrocyte plasma membrane: effects of calmodulin and taurine on the Ca(2+)-dependent ATPase activity and Ca2+ uptake.
    Alves-Ferreira M; Scofano HM; Ferreira-Pereira A
    Comp Biochem Physiol B Biochem Mol Biol; 1999 Mar; 122(3):269-76. PubMed ID: 10374256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The plasma membrane (Mg2+)-dependent adenosine triphosphatase from the human erythrocyte is not an ion pump.
    Forgac M; Cantley L
    J Membr Biol; 1984; 80(2):185-90. PubMed ID: 6148424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erythrocyte membrane abnormalities in hypertension: a comparison between two animal models.
    Chan TC; Godin DV; Sutter MC
    Clin Exp Hypertens A; 1983; 5(5):691-719. PubMed ID: 6136351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistent Ca2(+)-induced activation of erythrocyte membrane Ca2(+)-ATPase unrelated to calpain proteolysis.
    Roufogalis BD; Brzuszczak I; Conigrave AD; Xu YH; Machan CL; Wang KK
    Arch Biochem Biophys; 1990 May; 279(1):78-86. PubMed ID: 2140035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Red blood cell calmodulin and Ca2+ pump ATPase: preliminary results of a species comparison.
    Vincenzi FF
    Prog Clin Biol Res; 1981; 55():363-83. PubMed ID: 6117080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thapsigargin protects human erythrocyte Ca(2+)-ATPase from proteolysis.
    Bewaji CO; Dawson AP
    Cell Calcium; 1995 Jan; 17(1):14-20. PubMed ID: 7553777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The (Ca2+, Mg2+)-ATPase activity in erythrocyte membranes from essential hypertensive patients.
    Gutiérrez A; Ariza R; Frati-Munari AC; Oliva G; Mas-Oliva J
    Arch Invest Med (Mex); 1991; 22(3-4):279-83. PubMed ID: 1844113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP utilizing reactions of human erythrocyte membranes and the influence of modulator proteins.
    Maretzki D; Klatt D; Reimann B; Rapoport S
    Acta Biol Med Ger; 1981; 40(4-5):479-86. PubMed ID: 6118991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative action of calpain on erythrocyte Ca2(+)-pumping ATPase in sickle cell anaemia, essential hypertension and kwashiorkor.
    Olorunsogo OO; Agbolade FO; Owojuyigbe SO; Adebisi JA; Adebayo AO; Okunade WG
    Biosci Rep; 1990 Jun; 10(3):281-91. PubMed ID: 2145987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced calcium-sensitivity of erythrocytes in hypertension--calcium-induced changes of erythrocyte osmotic fragility in essential hypertension.
    Tsuda K; Minatogawa Y; Furuya S; Ueda E; Kusuyama Y; Shima H; Tamaki T; Nishio I; Kido R; Masuyama Y
    Jpn Circ J; 1986 Nov; 50(11):1158-64. PubMed ID: 3820528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The role of free calmodulin in the regulation of calcium-pump activity in erythrocytes].
    Orlov SN; Pokudin NI; Boĭtsov VI; Sitozhevskiĭ AV; Gulak PV
    Biokhimiia; 1985 Jun; 50(6):883-90. PubMed ID: 4027284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does calmodulin regulate the affinity of the human red cell Ca2+ pump for ATP?
    Caride AJ; Rossi JP; Garrahan PJ; Rega AF
    Biochim Biophys Acta; 1990 Aug; 1027(1):21-4. PubMed ID: 2144455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different susceptibility of red cell membrane proteins to calpain degradation.
    Salamino F; De Tullio R; Mengotti P; Viotti PL; Melloni E; Pontremoli S
    Arch Biochem Biophys; 1992 Oct; 298(1):287-92. PubMed ID: 1388013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+ transport in erythrocytes from patients with Duchenne muscular dystrophy.
    Pijst HL; Scholte HR
    J Neurol Sci; 1983; 60(3):411-7. PubMed ID: 6138395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lead does not affect calmodulin-induced activation of calcium-dependent adenosine triphosphatase in human red blood cell membranes.
    MacDonald E; Hellevuo K; Komulainen H
    Arch Toxicol Suppl; 1986; 9():397-400. PubMed ID: 2949723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calmodulin regulation of red blood cell Ca2+ transport.
    Larsen FL; Katz S; Roufogalis BD
    Ann N Y Acad Sci; 1980; 356():400-1. PubMed ID: 6112953
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.