These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
758 related articles for article (PubMed ID: 24237549)
1. Tunable band topology reflected by fractional quantum Hall States in two-dimensional lattices. Wang D; Liu Z; Cao J; Fan H Phys Rev Lett; 2013 Nov; 111(18):186804. PubMed ID: 24237549 [TBL] [Abstract][Full Text] [Related]
2. Fractional topological states of dipolar fermions in one-dimensional optical superlattices. Xu Z; Li L; Chen S Phys Rev Lett; 2013 May; 110(21):215301. PubMed ID: 23745893 [TBL] [Abstract][Full Text] [Related]
3. Fractional Chern Insulators in Harper-Hofstadter Bands with Higher Chern Number. Möller G; Cooper NR Phys Rev Lett; 2015 Sep; 115(12):126401. PubMed ID: 26431001 [TBL] [Abstract][Full Text] [Related]
4. Hofstadter Topology: Noncrystalline Topological Materials at High Flux. Herzog-Arbeitman J; Song ZD; Regnault N; Bernevig BA Phys Rev Lett; 2020 Dec; 125(23):236804. PubMed ID: 33337182 [TBL] [Abstract][Full Text] [Related]
5. Nearly flatbands with nontrivial topology. Sun K; Gu Z; Katsura H; Das Sarma S Phys Rev Lett; 2011 Jun; 106(23):236803. PubMed ID: 21770533 [TBL] [Abstract][Full Text] [Related]
7. Topological phases of monolayer and bilayer depleted Lieb lattices. Sil A; Ghosh AK J Phys Condens Matter; 2023 Dec; 36(12):. PubMed ID: 38064744 [TBL] [Abstract][Full Text] [Related]
8. Interferometric approach to measuring band topology in 2D optical lattices. Abanin DA; Kitagawa T; Bloch I; Demler E Phys Rev Lett; 2013 Apr; 110(16):165304. PubMed ID: 23679614 [TBL] [Abstract][Full Text] [Related]
9. Reaching fractional quantum Hall states with optical flux lattices. Cooper NR; Dalibard J Phys Rev Lett; 2013 May; 110(18):185301. PubMed ID: 23683212 [TBL] [Abstract][Full Text] [Related]
10. Topological quantum phase transitions on the kagomé and square-octagon lattices. Liu XP; Chen WC; Wang YF; Gong CD J Phys Condens Matter; 2013 Jul; 25(30):305602. PubMed ID: 23824482 [TBL] [Abstract][Full Text] [Related]
11. Local models of fractional quantum Hall states in lattices and physical implementation. Nielsen AE; Sierra G; Cirac JI Nat Commun; 2013; 4():2864. PubMed ID: 24284969 [TBL] [Abstract][Full Text] [Related]
12. Fractional Chern insulators in topological flat bands with higher Chern number. Liu Z; Bergholtz EJ; Fan H; Läuchli AM Phys Rev Lett; 2012 Nov; 109(18):186805. PubMed ID: 23215313 [TBL] [Abstract][Full Text] [Related]
13. Magnon Hall effect on the Lieb lattice. Cao X; Chen K; He D J Phys Condens Matter; 2015 Apr; 27(16):166003. PubMed ID: 25817818 [TBL] [Abstract][Full Text] [Related]
14. Fractional quantum Hall states at zero magnetic field. Neupert T; Santos L; Chamon C; Mudry C Phys Rev Lett; 2011 Jun; 106(23):236804. PubMed ID: 21770534 [TBL] [Abstract][Full Text] [Related]
15. Adiabatic continuation of fractional Chern insulators to fractional quantum Hall States. Scaffidi T; Möller G Phys Rev Lett; 2012 Dec; 109(24):246805. PubMed ID: 23368364 [TBL] [Abstract][Full Text] [Related]
16. Tight-binding electrons on triangular and kagomé lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies. Li J; Wang YF; Gong CD J Phys Condens Matter; 2011 Apr; 23(15):156002. PubMed ID: 21460430 [TBL] [Abstract][Full Text] [Related]
17. Fractional quantum Hall effect of hard-core bosons in topological flat bands. Wang YF; Gu ZC; Gong CD; Sheng DN Phys Rev Lett; 2011 Sep; 107(14):146803. PubMed ID: 22107227 [TBL] [Abstract][Full Text] [Related]
18. Combined topological and Landau order from strong correlations in Chern bands. Kourtis S; Daghofer M Phys Rev Lett; 2014 Nov; 113(21):216404. PubMed ID: 25479510 [TBL] [Abstract][Full Text] [Related]
19. Topological edge states and fractional quantum Hall effect from umklapp scattering. Klinovaja J; Loss D Phys Rev Lett; 2013 Nov; 111(19):196401. PubMed ID: 24266479 [TBL] [Abstract][Full Text] [Related]
20. Nontrivial topological phases on the stuffed honeycomb lattice. Sil A; Kumar Ghosh A J Phys Condens Matter; 2020 Jan; 32(2):025601. PubMed ID: 31550694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]