BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24237670)

  • 1. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide.
    Song Y
    J Integr Plant Biol; 2014 Feb; 56(2):106-13. PubMed ID: 24237670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants.
    Pazmiño DM; Romero-Puertas MC; Sandalio LM
    Plant Signal Behav; 2012 Mar; 7(3):425-7. PubMed ID: 22476465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis.
    Raghavan C; Ong EK; Dalling MJ; Stevenson TW
    Funct Integr Genomics; 2006 Jan; 6(1):60-70. PubMed ID: 16317577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling.
    Xu T; Wang Y; Liu X; Gao S; Qi M; Li T
    J Exp Bot; 2015 Jul; 66(13):3977-90. PubMed ID: 25948703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identity and Activity of 2,4-Dichlorophenoxyacetic Acid Metabolites in Wild Radish ( Raphanus raphanistrum).
    Goggin DE; Nealon GL; Cawthray GR; Scaffidi A; Howard MJ; Powles SB; Flematti GR
    J Agric Food Chem; 2018 Dec; 66(51):13378-13385. PubMed ID: 30516986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin herbicides: current status of mechanism and mode of action.
    Grossmann K
    Pest Manag Sci; 2010 Feb; 66(2):113-20. PubMed ID: 19823992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis.
    Eyer L; Vain T; Pařízková B; Oklestkova J; Barbez E; Kozubíková H; Pospíšil T; Wierzbicka R; Kleine-Vehn J; Fránek M; Strnad M; Robert S; Novak O
    PLoS One; 2016; 11(7):e0159269. PubMed ID: 27434212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2,4-D and dicamba resistance mechanisms in wild radish: subtle, complex and population specific?
    Goggin DE; Kaur P; Owen MJ; Powles SB
    Ann Bot; 2018 Sep; 122(4):627-640. PubMed ID: 29893784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology.
    Graña E; Costas-Gil A; Longueira S; Celeiro M; Teijeira M; Reigosa MJ; Sánchez-Moreiras AM
    J Plant Physiol; 2017 Nov; 218():45-55. PubMed ID: 28772153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytotoxicity of the chiral herbicide dichlorprop: Cross-talk between nitric oxide, reactive oxygen species and phytohormones.
    Chen H; Qin Y; Pu J; Hu J; Wen Y
    Sci Total Environ; 2021 Sep; 788():147866. PubMed ID: 34134377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis.
    Raghavan C; Ong EK; Dalling MJ; Stevenson TW
    Funct Integr Genomics; 2005 Jan; 5(1):4-17. PubMed ID: 15309660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid burst of H2O2 by plant growth regulators increases intracellular Ca2+ amounts and modulates CD4+ T cell activation.
    Ahmed A; Mukherjee S; Deobagkar M; Naik T; Nandi D
    Int Immunopharmacol; 2010 Nov; 10(11):1397-405. PubMed ID: 20728597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent selection with reduced 2,4-D amine doses results in the rapid evolution of 2,4-D herbicide resistance in wild radish (Raphanus raphanistrum L.).
    Ashworth MB; Walsh MJ; Flower KC; Powles SB
    Pest Manag Sci; 2016 Nov; 72(11):2091-2098. PubMed ID: 27442188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic auxin herbicide 2,4-D and its influence on a model BY-2 suspension.
    Muselikova K; Mouralova K
    Mol Biol Rep; 2024 Mar; 51(1):444. PubMed ID: 38520569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced herbicide metabolism induced by 2,4-D in herbicide susceptible Lolium rigidum provides protection against diclofop-methyl.
    Han H; Yu Q; Cawthray GR; Powles SB
    Pest Manag Sci; 2013 Sep; 69(9):996-1000. PubMed ID: 23785039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of auxinic phenoxyalkanoic acid herbicides by the acyl acid amido synthetase GH3.15 from Arabidopsis.
    Sherp AM; Lee SG; Schraft E; Jez JM
    J Biol Chem; 2018 Nov; 293(46):17731-17738. PubMed ID: 30315112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport.
    Goggin DE; Cawthray GR; Powles SB
    J Exp Bot; 2016 May; 67(11):3223-35. PubMed ID: 26994475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some aspects of the mode of action and metabolism of orthonil in plants.
    Vendrig J; Dierickx P
    Arch Environ Contam Toxicol; 1976; 4(4):395-403. PubMed ID: 999332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of selectivity of the corn herbicide BAS 662H: a combination of the novel auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba.
    Grossmann K; Caspar G; Kwiatkowski J; Bowe SJ
    Pest Manag Sci; 2002 Oct; 58(10):1002-14. PubMed ID: 12400439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-resistance to dicamba, 2,4-D, and fluroxypyr in
    LeClere S; Wu C; Westra P; Sammons RD
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E2911-E2920. PubMed ID: 29531066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.