BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24237672)

  • 1. In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats.
    Martínez-Fernández G; Abecia L; Martín-García AI; Ramos-Morales E; Hervás G; Molina-Alcaide E; Yáñez-Ruiz DR
    Animal; 2013 Dec; 7(12):1925-34. PubMed ID: 24237672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.
    Foskolos A; Siurana A; Rodriquez-Prado M; Ferret A; Bravo D; Calsamiglia S
    J Dairy Sci; 2015 Aug; 98(8):5482-91. PubMed ID: 26004834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters.
    Martínez-Fernández G; Abecia L; Martín-García AI; Ramos-Morales E; Denman SE; Newbold CJ; Molina-Alcaide E; Yáñez-Ruiz DR
    FEMS Microbiol Ecol; 2015 Aug; 91(8):fiv079. PubMed ID: 26183917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats.
    Abecia L; Toral PG; Martín-García AI; Martínez G; Tomkins NW; Molina-Alcaide E; Newbold CJ; Yáñez-Ruiz DR
    J Dairy Sci; 2012 Apr; 95(4):2027-36. PubMed ID: 22459848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue.
    Mitsumori M; Shinkai T; Takenaka A; Enishi O; Higuchi K; Kobayashi Y; Nonaka I; Asanuma N; Denman SE; McSweeney CS
    Br J Nutr; 2012 Aug; 108(3):482-91. PubMed ID: 22059589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning.
    Abecia L; Martín-García AI; Martínez G; Newbold CJ; Yáñez-Ruiz DR
    J Anim Sci; 2013 Oct; 91(10):4832-40. PubMed ID: 23965388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of garlic oil and four of its compounds on rumen microbial fermentation.
    Busquet M; Calsamiglia S; Ferret A; Carro MD; Kamel C
    J Dairy Sci; 2005 Dec; 88(12):4393-404. PubMed ID: 16291631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems.
    Castillejos L; Calsamiglia S; Ferret A
    J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient utilization, ruminal fermentation, microbial nitrogen flow, microbial abundances, and methane emissions in goats fed diets including tomato and cucumber waste fruits.
    Romero-Huelva M; Molina-Alcaide E
    J Anim Sci; 2013 Feb; 91(2):914-23. PubMed ID: 23243169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle.
    Cardozo PW; Calsamiglia S; Ferret A; Kamel C
    J Anim Sci; 2005 Nov; 83(11):2572-9. PubMed ID: 16230654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period.
    Candyrine SCL; Mahadzir MF; Garba S; Jahromi MF; Ebrahimi M; Goh YM; Samsudin AA; Sazili AQ; Chen WL; Ganesh S; Ronimus R; Muetzel S; Liang JB
    PLoS One; 2018; 13(7):e0199840. PubMed ID: 29975711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 2. Dairy goats.
    Romero P; Huang R; Jiménez E; Palma-Hidalgo JM; Ungerfeld EM; Popova M; Morgavi DP; Belanche A; Yáñez-Ruiz DR
    Animal; 2023 May; 17(5):100789. PubMed ID: 37087998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets.
    Biswas AA; Lee SS; Mamuad LL; Kim SH; Choi YJ; Lee C; Lee K; Bae GS; Lee SS
    Anim Sci J; 2018 Jan; 89(1):114-121. PubMed ID: 28960611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.
    Olijhoek DW; Hellwing ALF; Brask M; Weisbjerg MR; Højberg O; Larsen MK; Dijkstra J; Erlandsen EJ; Lund P
    J Dairy Sci; 2016 Aug; 99(8):6191-6205. PubMed ID: 27236758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats.
    Lu Q; Wu J; Wang M; Zhou C; Han X; Odongo EN; Tan Z; Tang S
    Arch Anim Nutr; 2016; 70(3):224-38. PubMed ID: 27032031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products.
    Ibáñez C; Criscioni P; Arriaga H; Merino P; Espinós FJ; Fernández C
    PLoS One; 2016; 11(3):e0151215. PubMed ID: 26983120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Oleic Acid on Rumen Fermentation and Fatty Acid Formation In Vitro.
    Wu D; Xu L; Tang S; Guan L; He Z; Guan Y; Tan Z; Han X; Zhou C; Kang J; Wang M
    PLoS One; 2016; 11(6):e0156835. PubMed ID: 27299526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo.
    Klop G; van Laar-van Schuppen S; Pellikaan WF; Hendriks WH; Bannink A; Dijkstra J
    Animal; 2017 Apr; 11(4):591-599. PubMed ID: 27748233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.