These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 24237706)
1. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706 [TBL] [Abstract][Full Text] [Related]
2. FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Jiang J; Yun Y; Liu Y; Ma Z Fungal Genet Biol; 2012 Aug; 49(8):653-62. PubMed ID: 22713714 [TBL] [Abstract][Full Text] [Related]
3. The endocytic cargo adaptor complex is required for cell-wall integrity via interacting with the sensor FgWsc2B in Fusarium graminearum. Xu L; Wang M; Tang G; Ma Z; Shao W Curr Genet; 2019 Aug; 65(4):1071-1080. PubMed ID: 30953125 [TBL] [Abstract][Full Text] [Related]
4. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum. Gu Q; Zhang C; Yu F; Yin Y; Shim WB; Ma Z Environ Microbiol; 2015 Aug; 17(8):2661-76. PubMed ID: 24903410 [TBL] [Abstract][Full Text] [Related]
5. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Chen L; Tong Q; Zhang C; Ding K Curr Genet; 2019 Feb; 65(1):153-166. PubMed ID: 29947970 [TBL] [Abstract][Full Text] [Related]
6. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. Jiang J; Liu X; Yin Y; Ma Z PLoS One; 2011; 6(11):e28291. PubMed ID: 22140571 [TBL] [Abstract][Full Text] [Related]
7. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
8. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. Zheng Z; Gao T; Hou Y; Zhou M FEMS Microbiol Lett; 2013 Dec; 349(2):88-98. PubMed ID: 24117691 [TBL] [Abstract][Full Text] [Related]
9. Endocytic FgEde1 regulates virulence and autophagy in Fusarium graminearum. Han X; Chen L; Li W; Zhang L; Zhang L; Zou S; Liang Y; Yu J; Dong H Fungal Genet Biol; 2020 Aug; 141():103400. PubMed ID: 32387406 [TBL] [Abstract][Full Text] [Related]
10. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Hou Z; Xue C; Peng Y; Katan T; Kistler HC; Xu JR Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017 [TBL] [Abstract][Full Text] [Related]
11. PGPBS, a mitogen-activated protein kinase kinase, is required for vegetative differentiation, cell wall integrity, and pathogenicity of the barley leaf stripe fungus Pyrenophora graminea. Liang Q; Li B; Wang J; Ren P; Yao L; Meng Y; Si E; Shang X; Wang H Gene; 2019 May; 696():95-104. PubMed ID: 30779945 [TBL] [Abstract][Full Text] [Related]
12. The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Lv W; Wu J; Xu Z; Dai H; Ma Z; Wang Z Curr Genet; 2019 Aug; 65(4):981-994. PubMed ID: 30852625 [TBL] [Abstract][Full Text] [Related]
13. The calcium-calcineurin and high-osmolarity glycerol pathways co-regulate tebuconazole sensitivity and pathogenicity in Fusarium graminearum. Wang H; Gai Y; Zhao Y; Wang M; Ma Z Pestic Biochem Physiol; 2023 Feb; 190():105311. PubMed ID: 36740345 [TBL] [Abstract][Full Text] [Related]
14. Endosomal sorting complexes required for transport-0 is essential for fungal development and pathogenicity in Fusarium graminearum. Xie Q; Chen A; Zheng W; Xu H; Shang W; Zheng H; Zhang D; Zhou J; Lu G; Li G; Wang Z Environ Microbiol; 2016 Nov; 18(11):3742-3757. PubMed ID: 26971885 [TBL] [Abstract][Full Text] [Related]
15. Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum. Song XS; Li HP; Zhang JB; Song B; Huang T; Du XM; Gong AD; Liu YK; Feng YN; Agboola RS; Liao YC Fungal Genet Biol; 2014 Feb; 63():24-41. PubMed ID: 24291007 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum. Yun Y; Yin D; Dawood DH; Liu X; Chen Y; Ma Z Fungal Genet Biol; 2014 Jul; 68():60-70. PubMed ID: 24785759 [TBL] [Abstract][Full Text] [Related]
17. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. Jiang J; Yun Y; Yang Q; Shim WB; Wang Z; Ma Z PLoS One; 2011; 6(9):e25311. PubMed ID: 21980420 [TBL] [Abstract][Full Text] [Related]
18. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Liu Y; Liu N; Yin Y; Chen Y; Jiang J; Ma Z Environ Microbiol; 2015 Nov; 17(11):4615-30. PubMed ID: 26234386 [TBL] [Abstract][Full Text] [Related]
19. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229 [TBL] [Abstract][Full Text] [Related]
20. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]