These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24237883)

  • 1. Structural updates of alignment of protein domains and consequences on evolutionary models of domain superfamilies.
    Mutt E; Rani SS; Sowdhamini R
    BioData Min; 2013 Nov; 6(1):20. PubMed ID: 24237883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PASS2.7: a database containing structure-based sequence alignments and associated features of protein domain superfamilies from SCOPe.
    Bhattacharyya T; Nayak S; Goswami S; Gadiyaram V; Mathew OK; Sowdhamini R
    Database (Oxford); 2022 Apr; 2022():. PubMed ID: 35411388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PASS2 version 6: a database of structure-based sequence alignments of protein domain superfamilies in accordance with SCOPe.
    Ghosh P; Bhattacharyya T; Mathew OK; Sowdhamini R
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30820573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PASS2 version 4: an update to the database of structure-based sequence alignments of structural domain superfamilies.
    Gandhimathi A; Nair AG; Sowdhamini R
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D531-4. PubMed ID: 22123743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PASS2 database for the structure-based sequence alignment of distantly related SCOP domain superfamilies: update to version 5 and added features.
    Gandhimathi A; Ghosh P; Hariharaputran S; Mathew OK; Sowdhamini R
    Nucleic Acids Res; 2016 Jan; 44(D1):D410-4. PubMed ID: 26553811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LenVarDB: database of length-variant protein domains.
    Mutt E; Mathew OK; Sowdhamini R
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D246-50. PubMed ID: 24194591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CUSP: an algorithm to distinguish structurally conserved and unconserved regions in protein domain alignments and its application in the study of large length variations.
    Sandhya S; Pankaj B; Govind MK; Offmann B; Srinivasan N; Sowdhamini R
    BMC Struct Biol; 2008 May; 8():28. PubMed ID: 18513436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PASS2: a semi-automated database of protein alignments organised as structural superfamilies.
    Mallika V; Bhaduri A; Sowdhamini R
    Nucleic Acids Res; 2002 Jan; 30(1):284-8. PubMed ID: 11752316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length variations amongst protein domain superfamilies and consequences on structure and function.
    Sandhya S; Rani SS; Pankaj B; Govind MK; Offmann B; Srinivasan N; Sowdhamini R
    PLoS One; 2009; 4(3):e4981. PubMed ID: 19333395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rebelling for a reason: protein structural "outliers".
    Arumugam G; Nair AG; Hariharaputran S; Ramanathan S
    PLoS One; 2013; 8(9):e74416. PubMed ID: 24073209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of substitutions and indels to the structural variations in ancient protein superfamilies.
    Zhang Z; Wang J; Gong Y; Li Y
    BMC Genomics; 2018 Oct; 19(1):771. PubMed ID: 30355304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.
    Pascual-GarcĂ­a A; Abia D; Ortiz AR; Bastolla U
    PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural diversity of domain superfamilies in the CATH database.
    Reeves GA; Dallman TJ; Redfern OC; Akpor A; Orengo CA
    J Mol Biol; 2006 Jul; 360(3):725-41. PubMed ID: 16780872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUPFAM: a database of sequence superfamilies of protein domains.
    Pandit SB; Bhadra R; Gowri VS; Balaji S; Anand B; Srinivasan N
    BMC Bioinformatics; 2004 Mar; 5():28. PubMed ID: 15113407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic classification of protein structures using low-dimensional structure space mappings.
    Asarnow D; Singh R
    BMC Bioinformatics; 2014; 15 Suppl 2(Suppl 2):S1. PubMed ID: 24564500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4SCOPmap: automated assignment of protein structures to evolutionary superfamilies.
    Cheek S; Qi Y; Krishna SS; Kinch LN; Grishin NV
    BMC Bioinformatics; 2004 Dec; 5():197. PubMed ID: 15598351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.