These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 24238293)
1. Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. Kwon DH; Park JH; Lee SH Pestic Biochem Physiol; 2013 Jan; 105(1):69-75. PubMed ID: 24238293 [TBL] [Abstract][Full Text] [Related]
2. Screening of target genes for RNAi in Tetranychus urticae and RNAi toxicity enhancement by chimeric genes. Kwon DH; Park JH; Ashok PA; Lee U; Lee SH Pestic Biochem Physiol; 2016 Jun; 130():1-7. PubMed ID: 27155477 [TBL] [Abstract][Full Text] [Related]
3. Agroinfiltration-based expression of hairpin RNA in soybean plants for RNA interference against Tetranychus urticae. Dubey VK; Lee UG; Kwon DH; Lee SH Pestic Biochem Physiol; 2017 Oct; 142():53-58. PubMed ID: 29107247 [TBL] [Abstract][Full Text] [Related]
4. Selection of lethal genes for ingestion RNA interference against western flower thrips, Frankliniella occidentalis, via leaf disc-mediated dsRNA delivery. Han SH; Kim JH; Kim K; Lee SH Pestic Biochem Physiol; 2019 Nov; 161():47-53. PubMed ID: 31685195 [TBL] [Abstract][Full Text] [Related]
5. Environmental RNA interference in two-spotted spider mite, Tetranychus urticae, reveals dsRNA processing requirements for efficient RNAi response. Bensoussan N; Dixit S; Tabara M; Letwin D; Milojevic M; Antonacci M; Jin P; Arai Y; Bruinsma K; Suzuki T; Fukuhara T; Zhurov V; Geibel S; Nauen R; Grbic M; Grbic V Sci Rep; 2020 Nov; 10(1):19126. PubMed ID: 33154461 [TBL] [Abstract][Full Text] [Related]
6. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Zhang H; Li HC; Miao XX Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822 [TBL] [Abstract][Full Text] [Related]
7. Localized efficacy of environmental RNAi in Tetranychus urticae. Bensoussan N; Milojevic M; Bruinsma K; Dixit S; Pham S; Singh V; Zhurov V; Grbić M; Grbić V Sci Rep; 2022 Aug; 12(1):14791. PubMed ID: 36042376 [TBL] [Abstract][Full Text] [Related]
8. Identification of target genes for RNAi-mediated control of the Twospotted Spider Mite. Yoon JS; Sahoo DK; Maiti IB; Palli SR Sci Rep; 2018 Oct; 8(1):14687. PubMed ID: 30279530 [TBL] [Abstract][Full Text] [Related]
9. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. Zhang X; Fan Z; Zhang R; Kong X; Liu F; Fang J; Zhang S; Zhang Z Pest Manag Sci; 2023 Apr; 79(4):1566-1577. PubMed ID: 36527705 [TBL] [Abstract][Full Text] [Related]
10. Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Khila A; Grbić M Dev Genes Evol; 2007 Mar; 217(3):241-51. PubMed ID: 17262226 [TBL] [Abstract][Full Text] [Related]
11. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Mehlhorn S; Ulrich J; Baden CU; Buer B; Maiwald F; Lueke B; Geibel S; Bucher G; Nauen R Pestic Biochem Physiol; 2021 Jul; 176():104870. PubMed ID: 34119215 [TBL] [Abstract][Full Text] [Related]
12. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. Gogoi A; Sarmah N; Kaldis A; Perdikis D; Voloudakis A Planta; 2017 Dec; 246(6):1233-1241. PubMed ID: 28924923 [TBL] [Abstract][Full Text] [Related]
13. RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing. Suzuki T; Nunes MA; España MU; Namin HH; Jin P; Bensoussan N; Zhurov V; Rahman T; De Clercq R; Hilson P; Grbic V; Grbic M PLoS One; 2017; 12(7):e0180654. PubMed ID: 28704448 [TBL] [Abstract][Full Text] [Related]
14. The development of an egg-soaking method for delivering dsRNAs into spider mites. Yang J; Zhang Y; Zhang Z; Ren M; Wang Y; Duan Y; Gao Y; Liu Z; Zhang P; Fan R; Zhou X Pestic Biochem Physiol; 2024 May; 201():105905. PubMed ID: 38685227 [TBL] [Abstract][Full Text] [Related]
15. A functional study of two dsRNA binding protein genes in Laodelphax striatellus. Lu DH; Wu M; Pu J; Feng A; Zhang Q; Han ZJ Pest Manag Sci; 2013 Sep; 69(9):1034-9. PubMed ID: 23828787 [TBL] [Abstract][Full Text] [Related]
16. Oral delivery of double-stranded RNA induces prolonged and systemic gene knockdown in Metaseiulus occidentalis only after feeding on Tetranychus urticae. Wu K; Hoy MA Exp Appl Acarol; 2014 Jun; 63(2):171-87. PubMed ID: 24509787 [TBL] [Abstract][Full Text] [Related]
17. Functional analysis of four upregulated carboxylesterase genes associated with fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Wei P; Li J; Liu X; Nan C; Shi L; Zhang Y; Li C; He L Pest Manag Sci; 2019 Jan; 75(1):252-261. PubMed ID: 29877064 [TBL] [Abstract][Full Text] [Related]
18. Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Luo Y; Wang X; Wang X; Yu D; Chen B; Kang L Insect Mol Biol; 2013 Oct; 22(5):574-83. PubMed ID: 23869949 [TBL] [Abstract][Full Text] [Related]
19. RNAi targeting ecdysone receptor blocks the larva to adult development of Tetranychus cinnabarinus. Shen GM; Chen W; Li CZ; Ou SY; He L Pestic Biochem Physiol; 2019 Sep; 159():85-90. PubMed ID: 31400788 [TBL] [Abstract][Full Text] [Related]
20. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation. Jin S; Singh ND; Li L; Zhang X; Daniell H Plant Biotechnol J; 2015 Apr; 13(3):435-46. PubMed ID: 25782349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]