These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24238897)

  • 41. Sulphide production and corrosion in seawaters during exposure to FAME diesel.
    Lee JS; Ray RI; Little BJ; Duncan KE; Oldham AL; Davidova IA; Suflita JM
    Biofouling; 2012; 28(5):465-78. PubMed ID: 22594394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy.
    Giorgi-Pérez AM; Arboleda-Ordoñez AM; Villamizar-Suárez W; Cardeñosa-Mendoza M; Jaimes-Prada R; Rincón-Orozco B; Niño-Gómez ME
    Bioelectrochemistry; 2021 Oct; 141():107868. PubMed ID: 34126368
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reservoir Souring - Latest developments for application and mitigation.
    Johnson RJ; Folwell BD; Wirekoh A; Frenzel M; Skovhus TL
    J Biotechnol; 2017 Aug; 256():57-67. PubMed ID: 28400136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Corrosion risk associated with microbial souring control using nitrate or nitrite.
    Hubert C; Nemati M; Jenneman G; Voordouw G
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):272-82. PubMed ID: 15711941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil.
    Li Z; Wan H; Song D; Liu X; Li Z; Du C
    Bioelectrochemistry; 2019 Apr; 126():121-129. PubMed ID: 30579249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.
    Zhang P; Xu D; Li Y; Yang K; Gu T
    Bioelectrochemistry; 2015 Feb; 101():14-21. PubMed ID: 25023048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Issues for storing plant-based alternative fuels in marine environments.
    Lee JS; Ray RI; Little BJ; Duncan KE; Aktas DF; Oldham AL; Davidova IA; Suflita JM
    Bioelectrochemistry; 2014 Jun; 97():145-53. PubMed ID: 24411308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans.
    Lopes FA; Morin P; Oliveira R; Melo LF
    Colloids Surf B Biointerfaces; 2005 Dec; 46(2):127-33. PubMed ID: 16290113
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus.
    Guan F; Liu Z; Dong X; Zhai X; Zhang B; Duan J; Wang N; Gao Y; Yang L; Hou B
    Sci Total Environ; 2021 Sep; 788():147573. PubMed ID: 34034174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of Syzygium aromaticum aqueous extract as an eco-friendly inhibitor for microbiologically influenced corrosion of carbon steel in oil reservoir environment.
    Parthipan P; AlSalhi MS; Devanesan S; Rajasekar A
    Bioprocess Biosyst Eng; 2021 Jul; 44(7):1441-1452. PubMed ID: 33710453
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrite as a causal factor for nitrate-dependent anaerobic corrosion of metallic iron induced by Prolixibacter strains.
    Iino T; Shono N; Ito K; Nakamura R; Sueoka K; Harayama S; Ohkuma M
    Microbiologyopen; 2021 Aug; 10(4):e1225. PubMed ID: 34459557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibitory and bactericidal action of the biocorrosion agents «INCORGAS» and «AMDOR».
    Tsygankova LE; Vigdorovich VI; Esina MN; Nazina TN; Dubinskaya EV
    Bioelectrochemistry; 2014 Jun; 97():154-61. PubMed ID: 24210782
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biofilm activity on corrosion of API 5L X65 steel weld bead.
    Liduino VS; Lutterbach MTS; Sérvulo EFC
    Colloids Surf B Biointerfaces; 2018 Dec; 172():43-50. PubMed ID: 30130636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.
    Melchers RE
    Bioelectrochemistry; 2014 Jun; 97():89-96. PubMed ID: 24067447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions.
    Li Q; Wang J; Xing X; Hu W
    Bioelectrochemistry; 2018 Aug; 122():40-50. PubMed ID: 29547738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions.
    Schütz MK; Schlegel ML; Libert M; Bildstein O
    Environ Sci Technol; 2015 Jun; 49(12):7483-90. PubMed ID: 25988515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel.
    Ramos Monroy OA; Ruiz Ordaz N; Hernández Gayosso MJ; Juárez Ramírez C; Galíndez Mayer J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29991-30002. PubMed ID: 31414386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effect of sulfate-reducing bacteria on steel corrosion in the presence of inhibitors].
    Purish LM; Pogrebova IS; Kozlova IA
    Mikrobiol Z; 2002; 64(6):67-72. PubMed ID: 12664553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.