These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24238924)

  • 1. Fat crystallisation at oil-water interfaces.
    Douaire M; di Bari V; Norton JE; Sullo A; Lillford P; Norton IT
    Adv Colloid Interface Sci; 2014 Jan; 203():1-10. PubMed ID: 24238924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of emulsifier type on the secondary crystallisation of monoacylglycerol and triacylglycerols in model dairy emulsions.
    MacWilliams SV; Sebben DA; Clulow AJ; Ferri JK; Gillies G; Golding M; Boyd BJ; Beattie DA; Krasowska M
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2839-2848. PubMed ID: 34801239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating the interface of an emulsion using X-ray scattering and tensiometry to understand protein-modulated alkylglyceride crystallisation.
    MacWilliams SV; Clulow AJ; Kirby NM; Miller R; Boyd BJ; Gillies G; Beattie DA; Krasowska M
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):202-214. PubMed ID: 36327723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins and emulsifiers at liquid interfaces.
    Wilde P; Mackie A; Husband F; Gunning P; Morris V
    Adv Colloid Interface Sci; 2004 May; 108-109():63-71. PubMed ID: 15072929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets.
    Arima S; Ueno S; Ogawa A; Sato K
    Langmuir; 2009 Sep; 25(17):9777-84. PubMed ID: 19588887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behaviour of protein-stabilised emulsions under various physiological conditions.
    Singh H; Sarkar A
    Adv Colloid Interface Sci; 2011 Jun; 165(1):47-57. PubMed ID: 21377641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability.
    Zhai J; Hoffmann SV; Day L; Lee TH; Augustin MA; Aguilar MI; Wooster TJ
    Langmuir; 2012 Feb; 28(5):2357-67. PubMed ID: 22201548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of temperature on food emulsifiers at fluid-fluid interfaces.
    Rodríguez Patino JM; Rodríguez Niño MR; Carrera Sánchez C; Navarro García JM; Rodríguez Mateo GR; Cejudo Fernández M
    Colloids Surf B Biointerfaces; 2001 Jul; 21(1-3):87-99. PubMed ID: 11377938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of solid shell nanoparticles with liquid ω-3 fatty acid core.
    Salminen H; Helgason T; Kristinsson B; Kristbergsson K; Weiss J
    Food Chem; 2013 Dec; 141(3):2934-43. PubMed ID: 23871043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles.
    Yang F; Niu Q; Lan Q; Sun D
    J Colloid Interface Sci; 2007 Feb; 306(2):285-95. PubMed ID: 17113594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze-thaw stability of water-in-oil emulsions.
    Ghosh S; Rousseau D
    J Colloid Interface Sci; 2009 Nov; 339(1):91-102. PubMed ID: 19683718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive adsorption between beta-casein or beta-lactoglobulin and model milk membrane lipids at oil-water interfaces.
    Waninge R; Walstra P; Bastiaans J; Nieuwenhuijse H; Nylander T; Paulsson M; Bergenståhl B
    J Agric Food Chem; 2005 Feb; 53(3):716-24. PubMed ID: 15686425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of interfacial milk protein complexation to stabilize oil-in-water emulsions against calcium.
    Ye A; Lo J; Singh H
    J Colloid Interface Sci; 2012 Jul; 378(1):184-90. PubMed ID: 22579517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some unique features of polymer crystallisation.
    Reiter G
    Chem Soc Rev; 2014 Apr; 43(7):2055-65. PubMed ID: 24150527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems.
    Cofrades S; Antoniou I; Solas MT; Herrero AM; Jiménez-Colmenero F
    Food Chem; 2013 Nov; 141(1):338-46. PubMed ID: 23768366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial design of protein-stabilized emulsions for optimal delivery of nutrients.
    Malaki Nik A; Wright AJ; Corredig M
    Food Funct; 2010 Nov; 1(2):141-8. PubMed ID: 21776464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for separating nucleation and growth in protein crystallisation.
    Chayen NE
    Prog Biophys Mol Biol; 2005 Jul; 88(3):329-37. PubMed ID: 15652248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of bituminous components at oil/water interfaces investigated by quartz crystal microbalance: implications to the stability of water-in-oil emulsions.
    Goual L; Horváth-Szabó G; Masliyah JH; Xu Z
    Langmuir; 2005 Aug; 21(18):8278-89. PubMed ID: 16114932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.