These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 24239308)

  • 1. Detection of macroalgae blooms by complex SAR imagery.
    Shen H; Perrie W; Liu Q; He Y
    Mar Pollut Bull; 2014 Jan; 78(1-2):190-5. PubMed ID: 24239308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.
    Singha S; Vespe M; Trieschmann O
    Mar Pollut Bull; 2013 Aug; 73(1):199-209. PubMed ID: 23790462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coastal pollution hazards in southern California observed by SAR imagery: stormwater plumes, wastewater plumes, and natural hydrocarbon seeps.
    Digiacomo PM; Washburn L; Holt B; Jones BH
    Mar Pollut Bull; 2004 Dec; 49(11-12):1013-24. PubMed ID: 15556188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign.
    Xing Q; Wu L; Tian L; Cui T; Li L; Kong F; Gao X; Wu M
    Mar Pollut Bull; 2018 Aug; 133():150-156. PubMed ID: 30041302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and effective method for monitoring floating green macroalgae blooms: a case study in the Yellow Sea.
    Zhang H; Qiu Z; Devred E; Sun D; Wang S; He Y; Yu Y
    Opt Express; 2019 Feb; 27(4):4528-4548. PubMed ID: 30876071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula.
    Mera D; Cotos JM; Varela-Pet J; Garcia-Pineda O
    Mar Pollut Bull; 2012 Oct; 64(10):2090-6. PubMed ID: 22874883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAR observation and model tracking of an oil spill event in coastal waters.
    Cheng Y; Li X; Xu Q; Garcia-Pineda O; Andersen OB; Pichel WG
    Mar Pollut Bull; 2011 Feb; 62(2):350-63. PubMed ID: 21067783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar.
    Singha S; Ressel R
    Mar Pollut Bull; 2016 Nov; 112(1-2):327-340. PubMed ID: 27531143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.
    Xu Q; Li X; Wei Y; Tang Z; Cheng Y; Pichel WG
    Mar Pollut Bull; 2013 Jun; 71(1-2):107-16. PubMed ID: 23618498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017.
    Makinde EO; Oyelade EO
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):66-74. PubMed ID: 31201700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical characterization of black water blooms in eutrophic waters.
    Duan H; Ma R; Loiselle SA; Shen Q; Yin H; Zhang Y
    Sci Total Environ; 2014 Jun; 482-483():174-83. PubMed ID: 24657365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Land consumption monitoring: an innovative method integrating SAR and optical data.
    Mastrorosa S; Crosetto M; Congedo L; Munafò M
    Environ Monit Assess; 2018 Sep; 190(10):588. PubMed ID: 30218161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images.
    Qiu Z; Li Z; Bilal M; Wang S; Sun D; Chen Y
    Opt Express; 2018 Oct; 26(21):26810-26829. PubMed ID: 30469760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel deep learning method for marine oil spill detection from satellite synthetic aperture radar imagery.
    Huang X; Zhang B; Perrie W; Lu Y; Wang C
    Mar Pollut Bull; 2022 Jun; 179():113666. PubMed ID: 35500373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery.
    Marapareddy R; Aanstoos JV; Younan NH
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of GF-3 Polarimetric SAR Data for Physical Scattering Mechanism Analysis and Terrain Classification.
    Yin J; Yang J; Zhang Q
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29194354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Land cover mapping of wetland areas in an agricultural landscape using SAR and Landsat imagery.
    Castañeda C; Ducrot D
    J Environ Manage; 2009 May; 90(7):2270-7. PubMed ID: 18387730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan.
    Akhtar AM; Qazi WA; Ahmad SR; Gilani H; Mahmood SA; Rasool A
    Environ Monit Assess; 2020 Aug; 192(9):584. PubMed ID: 32808098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain.
    Trescott A; Park MH
    Water Sci Technol; 2013; 67(5):1113-20. PubMed ID: 23416605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic linkage of a temperate intertidal macrobenthic food web under opportunistic macroalgal blooms: A stable isotope approach.
    Park HJ; Han E; Lee YJ; Kang CK
    Mar Pollut Bull; 2016 Oct; 111(1-2):86-94. PubMed ID: 27449625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.