These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 24239358)

  • 21. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin.
    Harder LM; Bunkenborg J; Andersen JS
    Autophagy; 2014 Feb; 10(2):339-55. PubMed ID: 24300666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The biological functions of sphingolipids in plant pathogenic fungi.
    Zhu XM; Li L; Bao JD; Wang JY; Daskalov A; Liu XH; Del Poeta M; Lin FC
    PLoS Pathog; 2023 Nov; 19(11):e1011733. PubMed ID: 37943805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The regulatory landscape of the yeast phosphoproteome.
    Leutert M; Barente AS; Fukuda NK; Rodriguez-Mias RA; Villén J
    Nat Struct Mol Biol; 2023 Nov; 30(11):1761-1773. PubMed ID: 37845410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased expression of ELOVL7 contributes to production of inflammatory cytokines in THP-1 cell-derived M1-like macrophages.
    Inoue Y; Kamiya T; Hara H
    J Clin Biochem Nutr; 2023 May; 72(3):215-224. PubMed ID: 37251958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterozygous Mutations in Aromatic Amino Acid Synthesis Genes Trigger TOR Pathway Activation in
    Schoonover MG; Chilson EC; Strome ED
    MicroPubl Biol; 2022; 2022():. PubMed ID: 36468155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis.
    Schlarmann P; Ikeda A; Funato K
    Membranes (Basel); 2021 Dec; 11(12):. PubMed ID: 34940472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput functional characterization of protein phosphorylation sites in yeast.
    Viéitez C; Busby BP; Ochoa D; Mateus A; Memon D; Galardini M; Yildiz U; Trovato M; Jawed A; Geiger AG; Oborská-Oplová M; Potel CM; Vonesch SC; Szu Tu C; Shahraz M; Stein F; Steinmetz LM; Panse VG; Noh KM; Savitski MM; Typas A; Beltrao P
    Nat Biotechnol; 2022 Mar; 40(3):382-390. PubMed ID: 34663920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae.
    Esch BM; Limar S; Bogdanowski A; Gournas C; More T; Sundag C; Walter S; Heinisch JJ; Ejsing CS; André B; Fröhlich F
    PLoS Genet; 2020 Aug; 16(8):e1008745. PubMed ID: 32845888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid metabolism of the oleaginous yeast Lipomyces starkeyi.
    Takaku H; Matsuzawa T; Yaoi K; Yamazaki H
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6141-6148. PubMed ID: 32458138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sphingolipid biosynthesis in man and microbes.
    Harrison PJ; Dunn TM; Campopiano DJ
    Nat Prod Rep; 2018 Sep; 35(9):921-954. PubMed ID: 29863195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae.
    Roelants FM; Leskoske KL; Martinez Marshall MN; Locke MN; Thorner J
    Biomolecules; 2017 Sep; 7(3):. PubMed ID: 28872598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.
    Pérez-Pérez ME; Couso I; Crespo JL
    Biomolecules; 2017 Jul; 7(3):. PubMed ID: 28704927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane engineering of S. cerevisiae targeting sphingolipid metabolism.
    Lindahl L; Santos AX; Olsson H; Olsson L; Bettiga M
    Sci Rep; 2017 Feb; 7():41868. PubMed ID: 28145511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases.
    Cao L; Tang Y; Quan Z; Zhang Z; Oliver SG; Zhang N
    PLoS Genet; 2016 Dec; 12(12):e1006458. PubMed ID: 27923067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.
    Olson DK; Fröhlich F; Farese RV; Walther TC
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):784-792. PubMed ID: 26747648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beneficial reward-to-risk action of glucosamine during pathogenesis of osteoarthritis.
    Kang YH; Park S; Ahn C; Song J; Kim D; Jin EJ
    Eur J Med Res; 2015 Oct; 20():89. PubMed ID: 26520587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan.
    Quan Z; Cao L; Tang Y; Yan Y; Oliver SG; Zhang N
    PLoS Genet; 2015 Jun; 11(6):e1005282. PubMed ID: 26103122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells.
    Pan ST; Qin Y; Zhou ZW; He ZX; Zhang X; Yang T; Yang YX; Wang D; Qiu JX; Zhou SF
    Drug Des Devel Ther; 2015; 9():1601-26. PubMed ID: 25834400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autophagy in the light of sphingolipid metabolism.
    Harvald EB; Olsen AS; Færgeman NJ
    Apoptosis; 2015 May; 20(5):658-70. PubMed ID: 25682163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rom2-dependent phosphorylation of Elo2 controls the abundance of very long-chain fatty acids.
    Olson DK; Fröhlich F; Christiano R; Hannibal-Bach HK; Ejsing CS; Walther TC
    J Biol Chem; 2015 Feb; 290(7):4238-47. PubMed ID: 25519905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.