These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 2423968)

  • 1. Binding of the EcoRII methylase to azacytosine-containing DNA.
    Friedman S
    Nucleic Acids Res; 1986 Jun; 14(11):4543-56. PubMed ID: 2423968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases.
    Friedman S
    J Biol Chem; 1985 May; 260(9):5698-705. PubMed ID: 2580836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor.
    Gabbara S; Bhagwat AS
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):87-92. PubMed ID: 7536414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct photolabeling of the EcoRII methyltransferase with S-adenosyl-L-methionine.
    Som S; Friedman S
    J Biol Chem; 1990 Mar; 265(8):4278-83. PubMed ID: 2407734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The core element of the EcoRII methylase as defined by protease digestion and deletion analysis.
    Friedman S; Som S; Yang LF
    Nucleic Acids Res; 1991 Oct; 19(19):5403-8. PubMed ID: 1923825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli.
    Bergerat A; Guschlbauer W
    Nucleic Acids Res; 1990 Aug; 18(15):4369-75. PubMed ID: 2201947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro methylation of DNA with Hpa II methylase.
    Quint A; Cedar H
    Nucleic Acids Res; 1981 Feb; 9(3):633-46. PubMed ID: 7220347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of recA-mediated strand exchange by adducts of azacytosine-containing DNA and the EcoRII methylase.
    Huang YC; Friedman S
    J Biol Chem; 1991 Sep; 266(26):17424-9. PubMed ID: 1894630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overproduction of DNA cytosine methyltransferases causes methylation and C --> T mutations at non-canonical sites.
    Bandaru B; Gopal J; Bhagwat AS
    J Biol Chem; 1996 Mar; 271(13):7851-9. PubMed ID: 8631830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Probing of contacts between EcoRII DNA methyltransferase and DNA using substrate analogs and molecular modeling].
    Kudan EV; Brevnov MG; Subach OM; Rechkoblit OA; Buĭnitskiĭ IaM; Gromova ES
    Mol Biol (Mosk); 2007; 41(5):885-99. PubMed ID: 18240571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine.
    Santi DV; Norment A; Garrett CE
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):6993-7. PubMed ID: 6209710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of EcoP1 modification methylase with S-adenosyl-L-methionine: a UV-crosslinking study.
    Krishnamurthy V; Rao DN
    Biochem Mol Biol Int; 1994 Mar; 32(4):623-32. PubMed ID: 8038713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the EcoRII methyltransferase to 5-fluorocytosine-containing DNA. Isolation of a bound peptide.
    Friedman S; Ansari N
    Nucleic Acids Res; 1992 Jun; 20(12):3241-8. PubMed ID: 1620620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the order of substrate addition to MspI DNA methyltransferase using a novel mechanism-based inhibitor.
    Taylor C; Ford K; Connolly BA; Hornby DP
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):493-504. PubMed ID: 8484730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of 5-azacytidine on E. coli cells with different DNA-methylases].
    Venozhinskis MT; Nesterenko VF; Kanopkaĭte SI; Bur'ianov IaI
    Biokhimiia; 1985 May; 50(5):749-54. PubMed ID: 2408684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of transcription in vitro by binding of DNA (cytosine-5)-methylases to DNA templates containing cytosine analogs.
    Som S; Friedman S
    J Biol Chem; 1994 Oct; 269(42):25986-91. PubMed ID: 7523398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival and mutagenic effects of 5-azacytidine in Escherichia coli.
    Lal D; Som S; Friedman S
    Mutat Res; 1988 May; 193(3):229-36. PubMed ID: 2452347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII [cytosine-C5]-DNA methyltransferase.
    Kossykh VG; Schlagman SL; Hattman S
    FEBS Lett; 1995 Aug; 370(1-2):75-7. PubMed ID: 7649307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and substrate specificity of isolated DNA methylases from Escherichia coli C.
    Urieli-Shoval S; Gruenbaum Y; Razin A
    J Bacteriol; 1983 Jan; 153(1):274-80. PubMed ID: 6336735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.