BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 24239682)

  • 1. Identifying colon cancer risk modules with better classification performance based on human signaling network.
    Qu X; Xie R; Chen L; Feng C; Zhou Y; Li W; Huang H; Jia X; Lv J; He Y; Du Y; Li W; Shi Y; He W
    Genomics; 2014 Oct; 104(4):242-8. PubMed ID: 24239682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays.
    Huang C; Sheng Y; Jia J; Chen L
    J Cancer Res Ther; 2014 Nov; 10 Suppl():C114-24. PubMed ID: 25450268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying progression related disease risk modules based on the human subcellular signaling networks.
    Xie R; Huang H; Li W; Chen B; Jiang J; He Y; Lv J; ma B; Zhou Y; Feng C; Chen L; He W
    Mol Biosyst; 2014 Dec; 10(12):3298-309. PubMed ID: 25315201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of specific modules and significant genes associated with colon cancer by weighted gene co‑expression network analysis.
    Feng Y; Li Y; Li L; Wang X; Chen Z
    Mol Med Rep; 2019 Jul; 20(1):693-700. PubMed ID: 31180534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification between normal and tumor tissues based on the pair-wise gene expression ratio.
    Yap Y; Zhang X; Ling MT; Wang X; Wong YC; Danchin A
    BMC Cancer; 2004 Oct; 4():72. PubMed ID: 15469618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in gene expression profiles and carcinogenesis pathways between colon and rectal cancer.
    Li JN; Zhao L; Wu J; Wu B; Yang H; Zhang HH; Qian JM
    J Dig Dis; 2012 Jan; 13(1):24-32. PubMed ID: 22188913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.
    Gu Y; Wang H; Qin Y; Zhang Y; Zhao W; Qi L; Zhang Y; Wang C; Guo Z
    Mol Biosyst; 2013 Mar; 9(3):467-77. PubMed ID: 23344900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and validation of gene module associated with lung cancer through coexpression network analysis.
    Liu R; Cheng Y; Yu J; Lv QL; Zhou HH
    Gene; 2015 May; 563(1):56-62. PubMed ID: 25752287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based identification of reliable bio-markers for cancers.
    Deng S; Qi J; Stephen M; Qiu L; Yang H
    J Theor Biol; 2015 Oct; 383():20-7. PubMed ID: 26247140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Repositioning through Systematic Mining of Gene Coexpression Networks in Cancer.
    Ivliev AE; 't Hoen PA; Borisevich D; Nikolsky Y; Sergeeva MG
    PLoS One; 2016; 11(11):e0165059. PubMed ID: 27824868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A network partition algorithm for mining gene functional modules of colon cancer from DNA microarray data.
    Ruan XG; Wang JL; Li JG
    Genomics Proteomics Bioinformatics; 2006 Nov; 4(4):245-52. PubMed ID: 17531800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parsimonious Gene Correlation Network Analysis (PGCNA): a tool to define modular gene co-expression for refined molecular stratification in cancer.
    Care MA; Westhead DR; Tooze RM
    NPJ Syst Biol Appl; 2019; 5():13. PubMed ID: 30993001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pathogenesis of Atherosclerosis Based on Human Signaling Networks and Stem Cell Expression Data.
    Li W; Huang H; Li L; Wang L; Li Y; Wang Y; Guo S; Li L; Wang D; He Y; Chen L
    Int J Biol Sci; 2018; 14(12):1678-1685. PubMed ID: 30416382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulatory network from microarray data of colon cancer patients using TSK-type recurrent neural fuzzy network.
    Vineetha S; Chandra Shekara Bhat C; Idicula SM
    Gene; 2012 Sep; 506(2):408-16. PubMed ID: 22759510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array.
    Gardina PJ; Clark TA; Shimada B; Staples MK; Yang Q; Veitch J; Schweitzer A; Awad T; Sugnet C; Dee S; Davies C; Williams A; Turpaz Y
    BMC Genomics; 2006 Dec; 7():325. PubMed ID: 17192196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle.
    Ahmed FE; Ahmed NC; Vos PW; Bonnerup C; Atkins JN; Casey M; Nuovo GJ; Naziri W; Wiley JE; Mota H; Allison RR
    Cancer Genomics Proteomics; 2013; 10(3):93-113. PubMed ID: 23741026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiling based on graph-clustering approach to determine colon cancer pathway.
    Zhu XQ; Hu ML; Zhang F; Tao Y; Wu CM; Lin SZ; He FL
    J Cancer Res Ther; 2013; 9(3):467-70. PubMed ID: 24125984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction.
    Wang SL; Li X; Zhang S; Gui J; Huang DS
    Comput Biol Med; 2010 Feb; 40(2):179-89. PubMed ID: 20044083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.