These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24239812)

  • 1. Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging.
    Kishi S
    Transl Res; 2014 Feb; 163(2):123-35. PubMed ID: 24239812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and chemical genetic approaches to developmental origins of aging and disease in zebrafish.
    Sasaki T; Kishi S
    Biochim Biophys Acta; 2013 Sep; 1832(9):1362-70. PubMed ID: 23660559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The search for evolutionary developmental origins of aging in zebrafish: a novel intersection of developmental and senescence biology in the zebrafish model system.
    Kishi S
    Birth Defects Res C Embryo Today; 2011 Sep; 93(3):229-48. PubMed ID: 21932432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A prospective epigenetic paradigm between cellular senescence and epithelial-mesenchymal transition in organismal development and aging.
    Kishi S; Bayliss PE; Hanai J
    Transl Res; 2015 Jan; 165(1):241-9. PubMed ID: 24924348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish as a genetic model in biological and behavioral gerontology: where development meets aging in vertebrates--a mini-review.
    Kishi S; Slack BE; Uchiyama J; Zhdanova IV
    Gerontology; 2009; 55(4):430-41. PubMed ID: 19654474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryonic senescence and laminopathies in a progeroid zebrafish model.
    Koshimizu E; Imamura S; Qi J; Toure J; Valdez DM; Carr CE; Hanai J; Kishi S
    PLoS One; 2011 Mar; 6(3):e17688. PubMed ID: 21479207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of zebrafish mutants showing alterations in senescence-associated biomarkers.
    Kishi S; Bayliss PE; Uchiyama J; Koshimizu E; Qi J; Nanjappa P; Imamura S; Islam A; Neuberg D; Amsterdam A; Roberts TM
    PLoS Genet; 2008 Aug; 4(8):e1000152. PubMed ID: 18704191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem Cell Depletion by Global Disorganization of the H3K9me3 Epigenetic Marker in Aging.
    Mendelsohn AR; Larrick JW
    Rejuvenation Res; 2015 Aug; 18(4):371-5. PubMed ID: 26160351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase.
    Sasaki T; Lian S; Khan A; Llop JR; Samuelson AV; Chen W; Klionsky DJ; Kishi S
    Autophagy; 2017 Feb; 13(2):386-403. PubMed ID: 27875093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases.
    Li Y; Tollefsbol TO
    Epigenomics; 2016 Dec; 8(12):1637-1651. PubMed ID: 27882781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary genetic bases of longevity and senescence.
    Govindaraju DR
    Adv Exp Med Biol; 2015; 847():1-44. PubMed ID: 25916584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating evolutionary and molecular genetics of aging.
    Flatt T; Schmidt PS
    Biochim Biophys Acta; 2009 Oct; 1790(10):951-62. PubMed ID: 19619612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Origins of Aging: Evidence that Aging is an Adaptive Phenotype.
    Singer MA
    Curr Aging Sci; 2016; 9(2):95-115. PubMed ID: 26864038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-Associated Different Transcriptome Profiling in Zebrafish and Rats: an Insight into the Diversity of Vertebrate Aging.
    Kijima Y; Wantong W; Igarashi Y; Yoshitake K; Asakawa S; Suzuki Y; Watabe S; Kinoshita S
    Mar Biotechnol (NY); 2022 Oct; 24(5):895-910. PubMed ID: 36063238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting Aging and Senescence-Current Concepts and Open Lessons.
    Schmeer C; Kretz A; Wengerodt D; Stojiljkovic M; Witte OW
    Cells; 2019 Nov; 8(11):. PubMed ID: 31731770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reserve-capacity hypothesis: evolutionary origins and modern implications of the trade-off between tumor-suppression and tissue-repair.
    Weinstein BS; Ciszek D
    Exp Gerontol; 2002 May; 37(5):615-27. PubMed ID: 11909679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic control of aging.
    Muñoz-Najar U; Sedivy JM
    Antioxid Redox Signal; 2011 Jan; 14(2):241-59. PubMed ID: 20518699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive aging in zebrafish.
    Yu L; Tucci V; Kishi S; Zhdanova IV
    PLoS One; 2006 Dec; 1(1):e14. PubMed ID: 17183640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional aging and gradual senescence in zebrafish.
    Kishi S
    Ann N Y Acad Sci; 2004 Jun; 1019():521-6. PubMed ID: 15247079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and epigenetic Muller's ratchet as a mechanism of frailty and morbidity during aging: a demographic genetic model.
    Innan H; Veitia R; Govindaraju DR
    Hum Genet; 2020 Mar; 139(3):409-420. PubMed ID: 31713020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.