These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 24240015)

  • 1. The development of an in vitro assay to screen lipid based nanoparticles for siRNA delivery.
    Zhang Y; Arrington L; Boardman D; Davis J; Xu Y; DiFelice K; Stirdivant S; Wang W; Budzik B; Bawiec J; Deng J; Beutner G; Seifried D; Stanton M; Gindy M; Leone A
    J Control Release; 2014 Jan; 174():7-14. PubMed ID: 24240015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics.
    Gindy ME; Feuston B; Glass A; Arrington L; Haas RM; Schariter J; Stirdivant SM
    Mol Pharm; 2014 Nov; 11(11):4143-53. PubMed ID: 25317715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery.
    Sato Y; Note Y; Maeki M; Kaji N; Baba Y; Tokeshi M; Harashima H
    J Control Release; 2016 May; 229():48-57. PubMed ID: 26995758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of physiological and biochemical barriers to siRNA liver delivery via lipid nanoparticle platform.
    Xu Y; Ou M; Keough E; Roberts J; Koeplinger K; Lyman M; Fauty S; Carlini E; Stern M; Zhang R; Yeh S; Mahan E; Wang Y; Slaughter D; Gindy M; Raab C; Thompson C; Hochman J
    Mol Pharm; 2014 May; 11(5):1424-34. PubMed ID: 24588618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes.
    Hashiba K; Sato Y; Harashima H
    J Control Release; 2017 Sep; 262():239-246. PubMed ID: 28774839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA.
    Sato Y; Matsui H; Sato R; Harashima H
    J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo.
    Sato Y; Hashiba K; Sasaki K; Maeki M; Tokeshi M; Harashima H
    J Control Release; 2019 Feb; 295():140-152. PubMed ID: 30610950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA.
    Li Y; Cheng Q; Jiang Q; Huang Y; Liu H; Zhao Y; Cao W; Ma G; Dai F; Liang X; Liang Z; Zhang X
    J Control Release; 2014 Feb; 176():104-14. PubMed ID: 24365128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid.
    Suzuki Y; Ishihara H
    Int J Pharm; 2016 Aug; 510(1):350-8. PubMed ID: 27374199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation.
    Kubota K; Onishi K; Sawaki K; Li T; Mitsuoka K; Sato T; Takeoka S
    Int J Nanomedicine; 2017; 12():5121-5133. PubMed ID: 28790820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges.
    Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN
    Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-L-lysine nanocarrier to suppress prostate cancer growth in mice.
    Guo J; Cheng WP; Gu J; Ding C; Qu X; Yang Z; O'Driscoll C
    Eur J Pharm Sci; 2012 Apr; 45(5):521-32. PubMed ID: 22186295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.
    Cheng X; Lee RJ
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):129-137. PubMed ID: 26900977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real time measurement of PEG shedding from lipid nanoparticles in serum via NMR spectroscopy.
    Wilson SC; Baryza JL; Reynolds AJ; Bowman K; Keegan ME; Standley SM; Gardner NP; Parmar P; Agir VO; Yadav S; Zunic A; Vargeese C; Lee CC; Rajan S
    Mol Pharm; 2015 Feb; 12(2):386-92. PubMed ID: 25581130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA.
    Yang XZ; Dou S; Wang YC; Long HY; Xiong MH; Mao CQ; Yao YD; Wang J
    ACS Nano; 2012 Jun; 6(6):4955-65. PubMed ID: 22646867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes.
    Bao Y; Jin Y; Chivukula P; Zhang J; Liu Y; Liu J; Clamme JP; Mahato RI; Ng D; Ying W; Wang Y; Yu L
    Pharm Res; 2013 Feb; 30(2):342-51. PubMed ID: 22983644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery.
    Wang XL; Xu R; Lu ZR
    J Control Release; 2009 Mar; 134(3):207-13. PubMed ID: 19135104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid nanoparticles improve activity of single-stranded siRNA and gapmer antisense oligonucleotides in animals.
    Prakash TP; Lima WF; Murray HM; Elbashir S; Cantley W; Foster D; Jayaraman M; Chappell AE; Manoharan M; Swayze EE; Crooke ST
    ACS Chem Biol; 2013 Jul; 8(7):1402-6. PubMed ID: 23614580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidic pH-induced changes in lipid nanoparticle membrane packing.
    Koitabashi K; Nagumo H; Nakao M; Machida T; Yoshida K; Sakai-Kato K
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183627. PubMed ID: 33901441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.