These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 24240126)
1. Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Park H; Larson BL; Kolewe ME; Vunjak-Novakovic G; Freed LE Exp Cell Res; 2014 Feb; 321(2):297-306. PubMed ID: 24240126 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Neal RA; Jean A; Park H; Wu PB; Hsiao J; Engelmayr GC; Langer R; Freed LE Tissue Eng Part A; 2013 Mar; 19(5-6):793-807. PubMed ID: 23190320 [TBL] [Abstract][Full Text] [Related]
3. The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. Park H; Larson BL; Guillemette MD; Jain SR; Hua C; Engelmayr GC; Freed LE Biomaterials; 2011 Mar; 32(7):1856-64. PubMed ID: 21144580 [TBL] [Abstract][Full Text] [Related]
4. Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering. Masoumi N; Jean A; Zugates JT; Johnson KL; Engelmayr GC J Biomed Mater Res A; 2013 Jan; 101(1):104-14. PubMed ID: 22826211 [TBL] [Abstract][Full Text] [Related]
5. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Kharaziha M; Nikkhah M; Shin SR; Annabi N; Masoumi N; Gaharwar AK; Camci-Unal G; Khademhosseini A Biomaterials; 2013 Sep; 34(27):6355-66. PubMed ID: 23747008 [TBL] [Abstract][Full Text] [Related]
6. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Morgan KY; Black LD Tissue Eng Part A; 2014 Jun; 20(11-12):1654-67. PubMed ID: 24410342 [TBL] [Abstract][Full Text] [Related]
7. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Barash Y; Dvir T; Tandeitnik P; Ruvinov E; Guterman H; Cohen S Tissue Eng Part C Methods; 2010 Dec; 16(6):1417-26. PubMed ID: 20367291 [TBL] [Abstract][Full Text] [Related]
8. 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture. Kolewe ME; Park H; Gray C; Ye X; Langer R; Freed LE Adv Mater; 2013 Aug; 25(32):4459-65. PubMed ID: 23765688 [TBL] [Abstract][Full Text] [Related]
9. Optical mapping of impulse propagation in engineered cardiac tissue. Radisic M; Fast VG; Sharifov OF; Iyer RK; Park H; Vunjak-Novakovic G Tissue Eng Part A; 2009 Apr; 15(4):851-60. PubMed ID: 18847360 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. Maidhof R; Tandon N; Lee EJ; Luo J; Duan Y; Yeager K; Konofagou E; Vunjak-Novakovic G J Tissue Eng Regen Med; 2012 Nov; 6(10):e12-23. PubMed ID: 22170772 [TBL] [Abstract][Full Text] [Related]
12. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S Int J Cardiol; 2013 Aug; 167(4):1461-8. PubMed ID: 22564386 [TBL] [Abstract][Full Text] [Related]
13. Channelled scaffolds for engineering myocardium with mechanical stimulation. Zhang T; Wan LQ; Xiong Z; Marsano A; Maidhof R; Park M; Yan Y; Vunjak-Novakovic G J Tissue Eng Regen Med; 2012 Oct; 6(9):748-56. PubMed ID: 22081518 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Frydrych M; Román S; MacNeil S; Chen B Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230 [TBL] [Abstract][Full Text] [Related]
15. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Boudou T; Legant WR; Mu A; Borochin MA; Thavandiran N; Radisic M; Zandstra PW; Epstein JA; Margulies KB; Chen CS Tissue Eng Part A; 2012 May; 18(9-10):910-9. PubMed ID: 22092279 [TBL] [Abstract][Full Text] [Related]
16. Characterizing collagen scaffold compliance with native myocardial strains using an ex-vivo cardiac model: The physio-mechanical influence of scaffold architecture and attachment method. Cyr JA; Burdett C; Pürstl JT; Thompson RP; Troughton SC; Sinha S; Best SM; Cameron RE Acta Biomater; 2024 Aug; 184():239-253. PubMed ID: 38942187 [TBL] [Abstract][Full Text] [Related]
17. Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering. Masoumi N; Johnson KL; Howell MC; Engelmayr GC Acta Biomater; 2013 Apr; 9(4):5974-88. PubMed ID: 23295404 [TBL] [Abstract][Full Text] [Related]
18. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Engelmayr GC; Cheng M; Bettinger CJ; Borenstein JT; Langer R; Freed LE Nat Mater; 2008 Dec; 7(12):1003-10. PubMed ID: 18978786 [TBL] [Abstract][Full Text] [Related]
19. Insulin-like growth factor-I and slow, bi-directional perfusion enhance the formation of tissue-engineered cardiac grafts. Cheng M; Moretti M; Engelmayr GC; Freed LE Tissue Eng Part A; 2009 Mar; 15(3):645-53. PubMed ID: 18759675 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]