These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 24240186)
1. Noise and its reduction in graphene based nanopore devices. Kumar A; Park KB; Kim HM; Kim KB Nanotechnology; 2013 Dec; 24(49):495503. PubMed ID: 24240186 [TBL] [Abstract][Full Text] [Related]
2. 1/f noise in graphene nanopores. Heerema SJ; Schneider GF; Rozemuller M; Vicarelli L; Zandbergen HW; Dekker C Nanotechnology; 2015 Feb; 26(7):074001. PubMed ID: 25629930 [TBL] [Abstract][Full Text] [Related]
3. Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate. Park KB; Kim HJ; Kim HM; Han SA; Lee KH; Kim SW; Kim KB Nanoscale; 2016 Mar; 8(10):5755-63. PubMed ID: 26909465 [TBL] [Abstract][Full Text] [Related]
4. Noise Analysis of Monolayer Graphene Nanopores. Zhang ZY; Deng YS; Tian HB; Yan H; Cui HL; Wang DQ Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30200591 [TBL] [Abstract][Full Text] [Related]
5. Graphene nanopore devices for DNA sensing. Merchant CA; Drndić M Methods Mol Biol; 2012; 870():211-26. PubMed ID: 22528266 [TBL] [Abstract][Full Text] [Related]
6. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore. Lv W; Liu S; Li X; Wu R Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097 [TBL] [Abstract][Full Text] [Related]
7. Fast and controllable fabrication of suspended graphene nanopore devices. Liu S; Zhao Q; Xu J; Yan K; Peng H; Yang F; You L; Yu D Nanotechnology; 2012 Mar; 23(8):085301. PubMed ID: 22293107 [TBL] [Abstract][Full Text] [Related]
8. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. Puster M; Rodríguez-Manzo JA; Balan A; Drndić M ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888 [TBL] [Abstract][Full Text] [Related]
9. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore. Heerema SJ; Vicarelli L; Pud S; Schouten RN; Zandbergen HW; Dekker C ACS Nano; 2018 Mar; 12(3):2623-2633. PubMed ID: 29474060 [TBL] [Abstract][Full Text] [Related]
10. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. Liu K; Feng J; Kis A; Radenovic A ACS Nano; 2014 Mar; 8(3):2504-11. PubMed ID: 24547924 [TBL] [Abstract][Full Text] [Related]
11. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing. Crick CR; Sze JY; Rosillo-Lopez M; Salzmann CG; Edel JB ACS Appl Mater Interfaces; 2015 Aug; 7(32):18188-94. PubMed ID: 26204996 [TBL] [Abstract][Full Text] [Related]
12. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases. Ahmed T; Haraldsen JT; Rehr JJ; Di Ventra M; Schuller I; Balatsky AV Nanotechnology; 2014 Mar; 25(12):125705. PubMed ID: 24577191 [TBL] [Abstract][Full Text] [Related]
13. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing. Qiu H; Zhou W; Guo W ACS Nano; 2021 Dec; 15(12):18848-18864. PubMed ID: 34841865 [TBL] [Abstract][Full Text] [Related]
14. DNA base detection using a single-layer MoS2. Farimani AB; Min K; Aluru NR ACS Nano; 2014 Aug; 8(8):7914-22. PubMed ID: 25007098 [TBL] [Abstract][Full Text] [Related]
15. DNA translocation through single-layer boron nitride nanopores. Gu Z; Zhang Y; Luan B; Zhou R Soft Matter; 2016 Jan; 12(3):817-23. PubMed ID: 26537824 [TBL] [Abstract][Full Text] [Related]
16. Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection. Puster M; Balan A; Rodríguez-Manzo JA; Danda G; Ahn JH; Parkin W; Drndić M Small; 2015 Dec; 11(47):6309-16. PubMed ID: 26500023 [TBL] [Abstract][Full Text] [Related]
17. Interfacial bonding characteristics between graphene and dielectric substrates. Das S; Lahiri D; Agarwal A; Choi W Nanotechnology; 2014 Jan; 25(4):045707. PubMed ID: 24399030 [TBL] [Abstract][Full Text] [Related]