These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24240213)

  • 1. Chromosomal location of a K/Na discrimination character in the D genome of wheat.
    Gorham J; Hardy C; Wyn Jones RG; Joppa LR; Law CN
    Theor Appl Genet; 1987 Sep; 74(5):584-8. PubMed ID: 24240213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of the K(+)/Na (+) discrimination locus Kna1 in wheat.
    Dubcovsky J; María GS; Epstein E; Luo MC; Dvořák J
    Theor Appl Genet; 1996 Mar; 92(3-4):448-54. PubMed ID: 24166270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introgression of the
    Li H; Deal KR; Luo MC; Ji W; Distelfeld A; Dvorak J
    Front Plant Sci; 2017; 8():2163. PubMed ID: 29326749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [RAPD markers for wheat chromosomes in Langdon disomic substitution lines].
    Chen J; Wang RR; Zhuang XX; Joppa LR
    Yi Chuan Xue Bao; 1996; 23(1):32-9. PubMed ID: 8695176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization and chromosome-specific TRAP-marker development for Langdon durum D-genome disomic substitution lines.
    Li J; Klindworth DL; Shireen F; Cai X; Hu J; Xu SS
    Genome; 2006 Dec; 49(12):1545-54. PubMed ID: 17426769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination.
    Dvořak J; Noaman MM; Goyal S; Gorham J
    Theor Appl Genet; 1994 Feb; 87(7):872-7. PubMed ID: 24190475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a complete set of isogenic wheat/rye D-genome substitution lines by means of Giemsa C-banding.
    Friebe B; Larter EN
    Theor Appl Genet; 1988 Sep; 76(3):473-9. PubMed ID: 24232217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of wild relatives to improve salt tolerance in wheat.
    Colmer TD; Flowers TJ; Munns R
    J Exp Bot; 2006; 57(5):1059-78. PubMed ID: 16513812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of self-fertile deletion homozygous and ditelosomic lines for the long arm of chromosome 2A in common wheat.
    Takenaka S; Joshi GP; Endo TR
    Genes Genet Syst; 2020 Jul; 95(2):95-99. PubMed ID: 32173682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats.
    Bai D; Scoles GJ; Knott DR
    Genome; 1995 Feb; 38(1):8-16. PubMed ID: 18470147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introgression of a 4D chromosomal fragment into durum wheat confers aluminium tolerance.
    Han C; Ryan PR; Yan Z; Delhaize E
    Ann Bot; 2014 Jul; 114(1):135-44. PubMed ID: 24737716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal location of gliadin coding genes in T. aestivum ssp. spelta and evidence on the lack of components controlled by Gli-2 loci in wheat aneuploids.
    Lafiandra D; Benedettelli S; Margiotta B; Porceddu E
    Theor Appl Genet; 1989 Aug; 78(2):177-83. PubMed ID: 24227142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of tetraploid and hexaploid wheat by utilization of monopentaploid hybrids.
    Bozzini A; Giorgi B
    Theor Appl Genet; 1971 Jan; 41(2):67-74. PubMed ID: 24430021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines.
    Zeng D; Luo J; Li Z; Chen G; Zhang L; Ning S; Yuan Z; Zheng Y; Hao M; Liu D
    PLoS One; 2016; 11(9):e0162847. PubMed ID: 27611704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marker-assisted characterization of durum wheat Langdon-Golden Ball disomic substitution lines.
    Xu SS; Chu CG; Chao S; Klindworth DL; Faris JD; Elias EM
    Theor Appl Genet; 2010 May; 120(8):1575-85. PubMed ID: 20140662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L.
    Song X; Song R; Zhou J; Yan W; Zhang T; Sun H; Xiao J; Wu Y; Xi M; Lou Q; Wang H; Wang X
    Chromosome Res; 2020 Jun; 28(2):171-182. PubMed ID: 32002727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat.
    Zhang R; Geng S; Qin Z; Tang Z; Liu C; Liu D; Song G; Li Y; Zhang S; Li W; Gao J; Han X; Li G
    BMC Genomics; 2019 Jan; 20(1):29. PubMed ID: 30630423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial characterization of the trait for enhanced K(+)-Na (+) discrimination in the D genome of wheat.
    Gorham J; Jones RG; Bristol A
    Planta; 1990 Mar; 180(4):590-7. PubMed ID: 24202105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication.
    Faris JD; Zhang Z; Chao S
    Gene; 2014 Jun; 542(2):198-208. PubMed ID: 24657062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat.
    Han C; Zhang P; Ryan PR; Rathjen TM; Yan Z; Delhaize E
    Theor Appl Genet; 2016 Apr; 129(4):729-739. PubMed ID: 26747046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.