These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24240344)

  • 1. Subunits of tetrameric α-amylase inhibitors of Hordeum chilense are encoded by genes located in chromosomes 4H(ch) and 7H (ch.).
    Sanchez-Monge R; Fernandez JA; Salcedo G
    Theor Appl Genet; 1987 Oct; 74(6):811-6. PubMed ID: 24240344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal location of structural genes controlling isozymes in Hordeum chilense : 3. Esterases, glutamate oxaloacetate transaminase and phosphoglucomutase.
    Fernández JA; Jouve N
    Theor Appl Genet; 1987 Sep; 73(5):690-8. PubMed ID: 24241192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding genes for endosperm proteins in Hordeum chilense.
    Tercero JA; Bernardo A; Jouve N
    Theor Appl Genet; 1991 Jan; 81(1):127-32. PubMed ID: 24221169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meiotic pairing of the amphiploid Hordeum chilense X Triticum turgidum conv. durum studied by means of Giemsa C-banding technique.
    Fernandez JA; Gonzalez JM; Jouve N
    Theor Appl Genet; 1985 Apr; 70(1):85-91. PubMed ID: 24254119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of wheat and tritordeum chromosomes by genomic in situ hybridization using total Hordeum chilense DNA as probe.
    Gonzalez MJ; Cabrera A
    Genome; 1999 Dec; 42(6):1194-200. PubMed ID: 10659787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 7H(ch) Hordeum chilense chromosome introgressions on the wheat endosperm proteomic profile.
    Collado-Romero M; Alós E; Prieto P
    J Agric Food Chem; 2015 Apr; 63(14):3793-802. PubMed ID: 25824108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT).
    Castillo A; Ramírez MC; Martín AC; Kilian A; Martín A; Atienza SG
    BMC Plant Biol; 2013 Jun; 13():87. PubMed ID: 23725040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal location of structural genes controlling isozymes in Hordeum chilense : 1. 6-Phosphogluconate dehydrogenase and malate dehydrogenase.
    Fernández JA; Jouve N
    Theor Appl Genet; 1987 Jan; 73(3):433-9. PubMed ID: 24241006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley.
    Rey MD; Calderón MC; Prieto P
    Front Plant Sci; 2015; 6():160. PubMed ID: 25852713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterisation of novel durum wheat
    Cifuentes Z; Calderón MC; Miguel-Rojas C; Sillero JC; Prieto P
    Front Plant Sci; 2024; 15():1393796. PubMed ID: 39109054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH.
    Prieto P; Ramírez MC; Ballesteros J; Cabrera A
    Hereditas; 2001; 135(2-3):171-4. PubMed ID: 12152330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheat tetrameric inhibitors of insect alpha-amylases: Alloploid heterosis at the molecular level.
    Gomez L; Sanchez-Monge R; Garcia-Olmedo F; Salcedo G
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3242-6. PubMed ID: 16594035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of a gamma-3 hordein mRNA (cDNA) from Hordeum chilense (Roem. et Schult.).
    Pistón F; Dorado G; Martín A; Barro F
    Theor Appl Genet; 2004 May; 108(7):1359-65. PubMed ID: 14747917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal location of genes coding for endosperm proteins of Hordeum chilense, determined by two-dimensional electrophoresis of wheat-H. chilense chromosome addition lines.
    Payne PI; Holt LM; Reader SM; Miller TE
    Biochem Genet; 1987 Feb; 25(1-2):53-65. PubMed ID: 3579867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgene integration and chromosome alterations in two transgenic lines of tritordeum.
    Barro F; Martín A; Cabrera A
    Chromosome Res; 2003; 11(6):565-72. PubMed ID: 14516065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linkage relationships between prolamin genes located on chromosome 1Hch in Hordeum chilense.
    Alvarez JB; Moral A; Martín LM; Martín A
    Theor Appl Genet; 2004 Mar; 108(5):891-5. PubMed ID: 14614565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences.
    Hagras AA; Kishii M; Tanaka H; Sato K; Tsujimoto H
    Genes Genet Syst; 2005 Jun; 80(3):147-59. PubMed ID: 16172528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects for exploitation of disease resistance from Hordeum chilense in cultivated cereals.
    Rubiales D; Niks RE; Carver TL; Ballesteros J; Martín A
    Hereditas; 2001; 135(2-3):161-9. PubMed ID: 12152329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cytogenetic analysis of durum wheat x tritordeum hybrids.
    Lima-Brito J; Guedes-Pinto H; Harrison GE; Heslop-Harrison JS
    Genome; 1997 Jun; 40(3):362-9. PubMed ID: 18464834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping.
    Rodríguez-Suárez C; Giménez MJ; Gutiérrez N; Avila CM; Machado A; Huttner E; Ramírez MC; Martín AC; Castillo A; Kilian A; Martín A; Atienza SG
    Theor Appl Genet; 2012 Mar; 124(4):713-22. PubMed ID: 22048641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.