These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24240431)

  • 1. Graphene mechanical oscillators with tunable frequency.
    Chen C; Lee S; Deshpande VV; Lee GH; Lekas M; Shepard K; Hone J
    Nat Nanotechnol; 2013 Dec; 8(12):923-7. PubMed ID: 24240431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators.
    Singh V; Sengupta S; Solanki HS; Dhall R; Allain A; Dhara S; Pant P; Deshmukh MM
    Nanotechnology; 2010 Apr; 21(16):165204. PubMed ID: 20351404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoelectromechanical systems: Tuning in to a graphene oscillator.
    Feng PX
    Nat Nanotechnol; 2013 Dec; 8(12):897-8. PubMed ID: 24302025
    [No Abstract]   [Full Text] [Related]  

  • 5. Photothermal self-oscillation and laser cooling of graphene optomechanical systems.
    Barton RA; Storch IR; Adiga VP; Sakakibara R; Cipriany BR; Ilic B; Wang SP; Ong P; McEuen PL; Parpia JM; Craighead HG
    Nano Lett; 2012 Sep; 12(9):4681-6. PubMed ID: 22889415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon nanomechanical coupling for nanoscale transduction.
    Thijssen R; Verhagen E; Kippenberg TJ; Polman A
    Nano Lett; 2013 Jul; 13(7):3293-7. PubMed ID: 23746212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron pumping in graphene mechanical resonators.
    Low T; Jiang Y; Katsnelson M; Guinea F
    Nano Lett; 2012 Feb; 12(2):850-4. PubMed ID: 22273444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers.
    Fardindoost S; Mohammadi S; Iraji zad A; Sarvari R; Shariat Panahi SP; Jokar E
    Nanotechnology; 2013 Apr; 24(13):135201. PubMed ID: 23478541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase synchronization of two anharmonic nanomechanical oscillators.
    Matheny MH; Grau M; Villanueva LG; Karabalin RB; Cross MC; Roukes ML
    Phys Rev Lett; 2014 Jan; 112(1):014101. PubMed ID: 24483899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable, broadband nonlinear nanomechanical resonator.
    Cho H; Yu MF; Vakakis AF; Bergman LA; McFarland DM
    Nano Lett; 2010 May; 10(5):1793-8. PubMed ID: 20384349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.
    Song X; Oksanen M; Sillanpää MA; Craighead HG; Parpia JM; Hakonen PJ
    Nano Lett; 2012 Jan; 12(1):198-202. PubMed ID: 22141577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromechanical piezoresistive sensing in suspended graphene membranes.
    Smith AD; Niklaus F; Paussa A; Vaziri S; Fischer AC; Sterner M; Forsberg F; Delin A; Esseni D; Palestri P; Östling M; Lemme MC
    Nano Lett; 2013 Jul; 13(7):3237-42. PubMed ID: 23786215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High frequency MoS2 nanomechanical resonators.
    Lee J; Wang Z; He K; Shan J; Feng PX
    ACS Nano; 2013 Jul; 7(7):6086-91. PubMed ID: 23738924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation.
    Bagheri M; Poot M; Li M; Pernice WP; Tang HX
    Nat Nanotechnol; 2011 Oct; 6(11):726-32. PubMed ID: 22020123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator.
    Feng XL; White CJ; Hajimiri A; Roukes ML
    Nat Nanotechnol; 2008 Jun; 3(6):342-6. PubMed ID: 18654544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements.
    Gavartin E; Verlot P; Kippenberg TJ
    Nat Nanotechnol; 2012 Aug; 7(8):509-14. PubMed ID: 22728341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling.
    Basarir O; Bramhavar S; Ekinci KL
    Nano Lett; 2012 Feb; 12(2):534-9. PubMed ID: 22263699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2009 May; 20(21):215502. PubMed ID: 19423931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wiring nanoscale biosensors with piezoelectric nanomechanical resonators.
    Sadek AS; Karabalin RB; Du J; Roukes ML; Koch C; Masmanidis SC
    Nano Lett; 2010 May; 10(5):1769-73. PubMed ID: 20380440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative mechanisms for precision assembly and actuation of arrays of nanowire oscillators.
    Kim K; Zhu FQ; Fan D
    ACS Nano; 2013 Apr; 7(4):3476-83. PubMed ID: 23484802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.