BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 24240614)

  • 1. Repriming of DNA synthesis at stalled replication forks by human PrimPol.
    Mourón S; Rodriguez-Acebes S; Martínez-Jiménez MI; García-Gómez S; Chocrón S; Blanco L; Méndez J
    Nat Struct Mol Biol; 2013 Dec; 20(12):1383-9. PubMed ID: 24240614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PrimPol breaks replication barriers.
    Helleday T
    Nat Struct Mol Biol; 2013 Dec; 20(12):1348-50. PubMed ID: 24304914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication.
    Bianchi J; Rudd SG; Jozwiakowski SK; Bailey LJ; Soura V; Taylor E; Stevanovic I; Green AJ; Stracker TH; Lindsay HD; Doherty AJ
    Mol Cell; 2013 Nov; 52(4):566-73. PubMed ID: 24267451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PRIMPOL ready, set, reprime!
    Tirman S; Cybulla E; Quinet A; Meroni A; Vindigni A
    Crit Rev Biochem Mol Biol; 2021 Feb; 56(1):17-30. PubMed ID: 33179522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation.
    Vallerga MB; Mansilla SF; Federico MB; Bertolin AP; Gottifredi V
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):E6624-33. PubMed ID: 26627254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells.
    Quinet A; Tirman S; Jackson J; Šviković S; Lemaçon D; Carvajal-Maldonado D; González-Acosta D; Vessoni AT; Cybulla E; Wood M; Tavis S; Batista LFZ; Méndez J; Sale JE; Vindigni A
    Mol Cell; 2020 Feb; 77(3):461-474.e9. PubMed ID: 31676232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis.
    Bai G; Kermi C; Stoy H; Schiltz CJ; Bacal J; Zaino AM; Hadden MK; Eichman BF; Lopes M; Cimprich KA
    Mol Cell; 2020 Jun; 78(6):1237-1251.e7. PubMed ID: 32442397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for PrimPol recruitment to replication forks by RPA.
    Guilliam TA; Brissett NC; Ehlinger A; Keen BA; Kolesar P; Taylor EM; Bailey LJ; Lindsay HD; Chazin WJ; Doherty AJ
    Nat Commun; 2017 May; 8():15222. PubMed ID: 28534480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Damage Tolerance by Eukaryotic DNA Polymerase and Primase PrimPol.
    Boldinova EO; Wanrooij PH; Shilkin ES; Wanrooij S; Makarova AV
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28754021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro lesion bypass by human PrimPol.
    Makarova AV; Boldinova EO; Belousova EA; Lavrik OI
    DNA Repair (Amst); 2018 Oct; 70():18-24. PubMed ID: 30098578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of human PrimPol, a DNA polymerase with primase activity.
    Rechkoblit O; Gupta YK; Malik R; Rajashankar KR; Johnson RE; Prakash L; Prakash S; Aggarwal AK
    Sci Adv; 2016 Oct; 2(10):e1601317. PubMed ID: 27819052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DNA ligands Arg47 and Arg76 are crucial for catalysis by human PrimPol.
    Boldinova EO; Manukyan АА; Makarova АV
    DNA Repair (Amst); 2021 Apr; 100():103048. PubMed ID: 33571927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative solutions and new scenarios for translesion DNA synthesis by human PrimPol.
    Martínez-Jiménez MI; García-Gómez S; Bebenek K; Sastre-Moreno G; Calvo PA; Díaz-Talavera A; Kunkel TA; Blanco L
    DNA Repair (Amst); 2015 May; 29():127-38. PubMed ID: 25746449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The invariant glutamate of human PrimPol DxE motif is critical for its Mn
    Calvo PA; Sastre-Moreno G; Perpiñá C; Guerra S; Martínez-Jiménez MI; Blanco L
    DNA Repair (Amst); 2019 May; 77():65-75. PubMed ID: 30889508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PrimPol: A Breakthrough among DNA Replication Enzymes and a Potential New Target for Cancer Therapy.
    Díaz-Talavera A; Montero-Conde C; Leandro-García LJ; Robledo M
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PrimPol, an archaic primase/polymerase operating in human cells.
    García-Gómez S; Reyes A; Martínez-Jiménez MI; Chocrón ES; Mourón S; Terrados G; Powell C; Salido E; Méndez J; Holt IJ; Blanco L
    Mol Cell; 2013 Nov; 52(4):541-53. PubMed ID: 24207056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage.
    Kang Z; Fu P; Alcivar AL; Fu H; Redon C; Foo TK; Zuo Y; Ye C; Baxley R; Madireddy A; Buisson R; Bielinsky AK; Zou L; Shen Z; Aladjem MI; Xia B
    Nat Commun; 2021 Oct; 12(1):5966. PubMed ID: 34645815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dissection of the domain architecture and catalytic activities of human PrimPol.
    Keen BA; Jozwiakowski SK; Bailey LJ; Bianchi J; Doherty AJ
    Nucleic Acids Res; 2014 May; 42(9):5830-45. PubMed ID: 24682820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human CST complex restricts excessive PrimPol repriming upon UV induced replication stress by suppressing p21.
    Sang PB; Jaiswal RK; Lyu X; Chai W
    Nucleic Acids Res; 2024 Apr; 52(7):3778-3793. PubMed ID: 38348929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human PrimPol mutation associated with high myopia has a DNA replication defect.
    Keen BA; Bailey LJ; Jozwiakowski SK; Doherty AJ
    Nucleic Acids Res; 2014 Oct; 42(19):12102-11. PubMed ID: 25262353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.