These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24240740)

  • 21. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation.
    Bahramnejad B; Naji M; Bose R; Jha S
    Biotechnol Adv; 2019 Nov; 37(7):107405. PubMed ID: 31185263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Production of transgenic sugarbeet plants (Beta vulgaris L.) using Agrobacterium rhizogenes].
    Kishchenko EM; Komarnitskiĭ IK; Kuchuk NV
    Tsitol Genet; 2005; 39(1):9-13. PubMed ID: 16018172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cucumber (Cucumis sativus L.) and kabocha squash (Cucurbita moschata Duch).
    Nanasato Y; Tabei Y
    Methods Mol Biol; 2015; 1223():299-310. PubMed ID: 25300850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector.
    Yamazaki M; Son L; Hayashi T; Morita N; Asamizu T; Mourakoshi I; Saito K
    Plant Cell Rep; 1996 Jan; 15(5):317-21. PubMed ID: 24178349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regeneration of flax plants transformed by Agrobacterium rhizogenes.
    Zhan XC; Jones DA; Kerr A
    Plant Mol Biol; 1988 Sep; 11(5):551-9. PubMed ID: 24272489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes.
    Saalbach I; Pickardt T; Machemehl F; Saalbach G; Schieder O; Müntz K
    Mol Gen Genet; 1994 Jan; 242(2):226-36. PubMed ID: 8159174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea.
    Kumar V; Jones B; Davey MR
    Plant Cell Rep; 1991 Jun; 10(3):135-8. PubMed ID: 24221492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation.
    Fan YL; Zhang XH; Zhong LJ; Wang XY; Jin LS; Lyu SH
    BMC Plant Biol; 2020 May; 20(1):208. PubMed ID: 32397958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agrobacterium-mediated transformation and plant regeneration from hypocotyl segments of Japanese persimmon (Diospyros kaki Thunb).
    Nakamura Y; Kobayashi S; Nakajima I
    Plant Cell Rep; 1998 Apr; 17(6-7):435-440. PubMed ID: 30736615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants.
    Fang G; Grumet R
    Plant Cell Rep; 1990 Jul; 9(3):160-4. PubMed ID: 24226603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Transgenic Papaya through Agrobacterium-Mediated Transformation.
    Azad MA; Rabbani MG; Amin L; Sidik NM
    Int J Genomics; 2013; 2013():235487. PubMed ID: 24066284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient regeneration protocol for Agrobacterium-mediated transformation of melon (Cucumis melo L.).
    Zhang HJ; Gao P; Wang XZ; Luan FS
    Genet Mol Res; 2014 Jan; 13(1):54-63. PubMed ID: 24446287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transgenic grasspea (Lathyrus sativus L.): factors influencing agrobacterium-mediated transformation and regeneration.
    Barik DP; Mohapatra U; Chand PK
    Plant Cell Rep; 2005 Nov; 24(9):523-31. PubMed ID: 15948005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cucumber (Cucumis sativus L.).
    Burza W; Zuzga S; Yin Z; Malepszy S
    Methods Mol Biol; 2006; 343():427-38. PubMed ID: 16988365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Hairy root induced by wild-type agrobacterium rhizogenes K599 in soybean, cucumber and garden balsam in vivo].
    Xiang TH; Wang LL; Pang JL; Chen M; Xu C
    Yi Chuan; 2005 Sep; 27(5):783-6. PubMed ID: 16257909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advances in Agrobacterium tumefaciens-mediated transgenic cucumber].
    Chai L; Fan H; Liu C; Du C
    Sheng Wu Gong Cheng Xue Bao; 2020 Apr; 36(4):643-651. PubMed ID: 32347059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment of
    Sharma S; Singh Y; Verma PK; Vakhlu J
    3 Biotech; 2021 Feb; 11(2):82. PubMed ID: 33505837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites.
    Saito K; Yamazaki M; Murakoshi I
    J Nat Prod; 1992 Feb; 55(2):149-62. PubMed ID: 1624938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Induction of cucumber hairy roots and effect of cytokinin 6-BA on its growth and morphology].
    Shi HP; Qi Y; Zhang Y; Liang S
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):514-20. PubMed ID: 16755937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene.
    Chan MT; Chang HH; Ho SL; Tong WF; Yu SM
    Plant Mol Biol; 1993 Jun; 22(3):491-506. PubMed ID: 8392395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.