These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 24240760)
1. Chloroplast DNA differences between two species of Oenothera subsection Munzia: location in the chloroplast genome and relevance to possible interactions between nuclear and plastid genomes. Vom Stein J; Hachtel W Theor Appl Genet; 1986 Nov; 73(1):141-7. PubMed ID: 24240760 [TBL] [Abstract][Full Text] [Related]
2. Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera. Gordon KH; Crouse EJ; Bohnert HJ; Herrmann RG Theor Appl Genet; 1982 Dec; 61(4):373-84. PubMed ID: 24270500 [TBL] [Abstract][Full Text] [Related]
4. Restriction endonuclease cleavage site map of chloroplast DNA from Oenothera parviflora (Euoenothera plastome IV). Gordon KH; Crouse EJ; Bohnert HJ; Herrmann RG Theor Appl Genet; 1981 Sep; 59(5):281-96. PubMed ID: 24276512 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the plastid DNA in an Oenothera plastome mutant deficient in ribulose bisphosphate carboxylase. Gordon KH; Hildebrandt JW; Bohnert HJ; Herrmann RG; Schmitt JM Theor Appl Genet; 1980 Sep; 57(5):203-7. PubMed ID: 24301093 [TBL] [Abstract][Full Text] [Related]
6. Chloroplast DNA differences between cultivated hop, Humulus lupulus and the related species H. japonicus. Pillay M; Kenny ST Theor Appl Genet; 1994 Oct; 89(2-3):372-8. PubMed ID: 24177856 [TBL] [Abstract][Full Text] [Related]
7. Genetic control of chlorophyll biosynthesis by the plastome in some Oenothera species (subgenus Munzia). Hachtel W Planta; 1981 Apr; 151(4):299-303. PubMed ID: 24301969 [TBL] [Abstract][Full Text] [Related]
8. Structural organization and evolution of the plastid genome of Vaucheria sessilis (Xanthophyceae). Linne von Berg KH; Kowallik KV Biosystems; 1988; 21(3-4):239-47. PubMed ID: 2840135 [TBL] [Abstract][Full Text] [Related]
9. The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. Turmel M; Otis C; Lemieux C BMC Biol; 2005 Oct; 3():22. PubMed ID: 16236178 [TBL] [Abstract][Full Text] [Related]
10. Chloroplast DNA differences in the genus Oenothera subsection Munzia: a short direct repeat resembling the lambda chromosomal attachment site occurs as a deletion/insertion within an intron of an NADH-dehydrogenase gene. vom Stein J; Hachtel W Curr Genet; 1988 Feb; 13(2):191-7. PubMed ID: 2836087 [TBL] [Abstract][Full Text] [Related]
11. Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Ogihara Y; Tsunewaki K Theor Appl Genet; 1988 Sep; 76(3):321-32. PubMed ID: 24232195 [TBL] [Abstract][Full Text] [Related]
12. Deletions/insertions, short inverted repeats, sequences resembling att-lambda, and frame shift mutated open reading frames are involved in chloroplast DNA differences in the genus Oenothera subsection Munzia. vom Stein J; Hachtel W Mol Gen Genet; 1988 Aug; 213(2-3):513-8. PubMed ID: 3185513 [TBL] [Abstract][Full Text] [Related]
13. Chloroplast DNA variability in the genus Helianthus: restriction analysis and S1 nuclease mapping of DNA-DNA heteroduplexes. Serror P; Heyraud F; Heizmann P Plant Mol Biol; 1990 Aug; 15(2):269-80. PubMed ID: 1983299 [TBL] [Abstract][Full Text] [Related]
14. Physical map and gene localization on sunflower (Helianthus annuus) chloroplast DNA: evidence for an inversion of a 23.5-kbp segment in the large single copy region. Heyraud F; Serror P; Kuntz M; Steinmetz A; Heizmann P Plant Mol Biol; 1987 Sep; 9(5):485-96. PubMed ID: 24277135 [TBL] [Abstract][Full Text] [Related]
15. Rearrangements in the chloroplast genomes of mung bean and pea. Palmer JD; Thompson WF Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5533-7. PubMed ID: 16593087 [TBL] [Abstract][Full Text] [Related]
16. Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat. Boudreau E; Turmel M Plant Mol Biol; 1995 Jan; 27(2):351-64. PubMed ID: 7888624 [TBL] [Abstract][Full Text] [Related]
17. Phylogenetic relationships of turfgrasses as revealed by restriction fragment analysis of chloroplast DNA. Yaneshita M; Ohmura T; Sasakuma T; Ogihara Y Theor Appl Genet; 1993 Oct; 87(1-2):129-35. PubMed ID: 24190204 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of chloroplast DNA in Pyrus species: physical map and gene localization. Katayama H; Uematsu C Theor Appl Genet; 2003 Jan; 106(2):303-10. PubMed ID: 12582856 [TBL] [Abstract][Full Text] [Related]
19. The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data. Greiner S; Wang X; Herrmann RG; Rauwolf U; Mayer K; Haberer G; Meurer J Mol Biol Evol; 2008 Sep; 25(9):2019-30. PubMed ID: 18614526 [TBL] [Abstract][Full Text] [Related]
20. Conservation of sequence arrangement among higher plant chloroplast DNAs: molecular cross hybridization among the Solanaceae and between Nicotiana and Spinacia. Fluhr R; Edelman M Nucleic Acids Res; 1981 Dec; 9(24):6841-53. PubMed ID: 6278451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]