These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24241054)

  • 1. Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis.
    Heller W; Forkmann G; Britsch L; Grisebach H
    Planta; 1985 Aug; 165(2):284-7. PubMed ID: 24241054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation).
    Stich K; Eidenberger T; Wurst F; Forkmann G
    Planta; 1992 Apr; 187(1):103-8. PubMed ID: 24177973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flowers of Matthiola incana R. Br.
    Heller W; Britsch L; Forkmann G; Grisebach H
    Planta; 1985 Feb; 163(2):191-6. PubMed ID: 24249337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The B-ring hydroxylation pattern of intermediates of anthocyanin synthesis in pelargonidin-and cyanidin-producing lines of Matthiola incana.
    Forkmann G
    Planta; 1980 Mar; 148(2):157-61. PubMed ID: 24309703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers of Dahlia variabilis.
    Fischer D; Stich K; Britsch L; Grisebach H
    Arch Biochem Biophys; 1988 Jul; 264(1):40-7. PubMed ID: 3293532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavan-3-ol Biosynthesis : The Conversion of (+)-Dihydroquercetin and Flavan-3,4-cis-Diol (Leucocyanidin) to (+)-Catechin by Reductases Extracted from Cell Suspension Cultures of Douglas Fir.
    Stafford HA; Lester HH
    Plant Physiol; 1984 Sep; 76(1):184-6. PubMed ID: 16663794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth.
    Liu H; Lou Q; Ma J; Su B; Gao Z; Liu Y
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavan-3-ol Biosynthesis : The Conversion of (+)-Dihydromyricetin to Its Flavan-3,4-Diol (Leucodelphinidin) and to (+)-Gallocatechin by Reductases Extracted from Tissue Cultures of Ginkgo biloba and Pseudotsuga menziesii.
    Stafford HA; Lester HH
    Plant Physiol; 1985 Aug; 78(4):791-4. PubMed ID: 16664326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic control of UDP-glucose: anthocyanin 5-O-glucosyltransferase from flowers of Matthiola incana R.Br.
    Teusch M; Forkmann G; Seyffert W
    Planta; 1986 Sep; 168(4):586-91. PubMed ID: 24232337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanin Biosynthesis of Chrysanthemum.
    Lim SH; Park B; Kim DH; Park S; Yang JH; Jung JA; Lee J; Lee JY
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33120878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precursors and genetic control of anthocyanin synthesis in Matthiola incana R. Br.
    Forkmann G
    Planta; 1977 Jan; 137(2):159-63. PubMed ID: 24420633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and expression of chalcone synthase in different genotypes of Matthiola incana R.Br. during flower development.
    Rall S; Hemleben V
    Plant Mol Biol; 1984 May; 3(3):137-45. PubMed ID: 24310347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydroflavonol 4-Reductase Genes from
    Li Y; Liu X; Cai X; Shan X; Gao R; Yang S; Han T; Wang S; Wang L; Gao X
    Front Plant Sci; 2017; 8():428. PubMed ID: 28400785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Transformation of Dihydroflavonols and Flavan-3-ols by Anthocyanidin Synthase from
    Zhang JR; Trossat-Magnin C; Bathany K; Negroni L; Delrot S; Chaudière J
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparent Testa Glabra 1 (TTG1) and TTG1-like genes in Matthiola incana R. Br. and related Brassicaceae and mutation in the WD-40 motif.
    Dressel A; Hemleben V
    Plant Biol (Stuttg); 2009 Mar; 11(2):204-12. PubMed ID: 19228327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of a double-flower mutation in Matthiola incana.
    Nakatsuka T; Koishi K
    Plant Sci; 2018 Mar; 268():39-46. PubMed ID: 29362082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the B-ring during flavonoid synthesis in Petunia hybrida: Effect of the hydroxylation gene Hf1 on dihydroflavonol intermediates.
    Tabak AJ; Schram AW; Bennink GJ
    Planta; 1981 Dec; 153(5):462-5. PubMed ID: 24275818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Dihydrokaempferol by Vitis vinfera Dihydroflavonol 4-Reductase to Produce Orange Pelargonidin-Type Anthocyanins.
    Xie S; Zhao T; Zhang Z; Meng J
    J Agric Food Chem; 2018 Apr; 66(13):3524-3532. PubMed ID: 29554804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R. Br. (Brassicaceae).
    Hemleben V; Dressel A; Epping B; Lukacin R; Martens S; Austin M
    Plant Mol Biol; 2004 May; 55(3):455-65. PubMed ID: 15604692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymic and nonenzymic reduction of (+)-dihydroquercetin to its 3,4,-diol.
    Stafford HA; Lester HH
    Plant Physiol; 1982 Sep; 70(3):695-8. PubMed ID: 16662559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.