BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24241145)

  • 1. Salt tolerance in the halophyte Suaeda maritima L. Dum. : The maintenance of turgor pressure and water-potential gradients in plants growing at different salinities.
    Clipson NJ; Tomos AD; Flowers TJ; Jones RG
    Planta; 1985 Aug; 165(3):392-6. PubMed ID: 24241145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SALT TOLERANCE IN THE HALOPHYTE SUAEDA MARITIMA (L.) DUM.: THE EFFECT OF SALINITY ON THE CONCENTRATION OF SODIUM IN THE XYLEM.
    Clipson NJW; Flowers TJ
    New Phytol; 1987 Mar; 105(3):359-366. PubMed ID: 33873898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjustments in leaf water relations of mangrove (Avicennia germinans) seedlings grown in a salinity gradient.
    Suárez N; Sobrado MA
    Tree Physiol; 2000 Mar; 20(4):277-282. PubMed ID: 12651465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecophysiological response of Crambe maritima to airborne and soil-borne salinity.
    de Vos AC; Broekman R; Groot MP; Rozema J
    Ann Bot; 2010 Jun; 105(6):925-37. PubMed ID: 20354071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the superoxide dismutase genes of the halophyte Suaeda maritima in Japan and Egypt.
    Mohamed E; Matsuda R; El-Khatib AA; Takechi K; Takano H; Takio S
    Plant Cell Rep; 2015 Dec; 34(12):2099-110. PubMed ID: 26267391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize.
    Westgate ME; Boyer JS
    Planta; 1985 Jul; 164(4):540-9. PubMed ID: 24248230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salinity effects on the leaf water relations components and ion accumulation patterns in Avicennia germinans (L.) L. seedlings.
    Suárez N; Sobrado MA; Medina E
    Oecologia; 1998 Apr; 114(3):299-304. PubMed ID: 28307772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations.
    Tattini M; Montagni G; Traversi ML
    Tree Physiol; 2002 Apr; 22(6):403-12. PubMed ID: 11960765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tomato plant-water uptake and plant-water relationships under saline growth conditions.
    Romero-Aranda R; Soria T; Cuartero J
    Plant Sci; 2001 Jan; 160(2):265-272. PubMed ID: 11164598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves.
    Pierce M; Raschke K
    Planta; 1980 Mar; 148(2):174-82. PubMed ID: 24309706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal patterns of leaf water relations in four co-occurring forest tree species: Parameters from pressure-volume curves.
    Roberts SW; Strain BR; Knoerr KR
    Oecologia; 1980 Sep; 46(3):330-337. PubMed ID: 28310040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early effects of salt stress on the physiological and oxidative status of the halophyte Lobularia maritima.
    Ben Hsouna A; Ghneim-Herrera T; Ben Romdhane W; Dabbous A; Ben Saad R; Brini F; Abdelly C; Ben Hamed K
    Funct Plant Biol; 2020 Sep; 47(10):912-924. PubMed ID: 32611480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daily Changes in CO(2) and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity.
    Winter K; Gademann R
    Plant Physiol; 1991 Mar; 95(3):768-76. PubMed ID: 16668052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in osmotic and turgor pressure in response to sugar accumulation in barley source leaves.
    Koroleva OA; Tomos AD; Farrar J; Pollock CJ
    Planta; 2002 Jun; 215(2):210-9. PubMed ID: 12029470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in
    Hmidi D; Abdelly C; Athar HU; Ashraf M; Messedi D
    Physiol Mol Biol Plants; 2018 Nov; 24(6):1017-1033. PubMed ID: 30425420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.
    Nguyen HT; Meir P; Sack L; Evans JR; Oliveira RS; Ball MC
    Plant Cell Environ; 2017 Aug; 40(8):1576-1591. PubMed ID: 28382635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradients of turgor, osmotic pressure, and water potential in the cortex of the hypocotyl of growing ricinus seedlings : effects of the supply of water from the xylem and of solutes from the Phloem.
    Meshcheryakov A; Steudle E; Komor E
    Plant Physiol; 1992 Mar; 98(3):840-52. PubMed ID: 16668755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants.
    Gharat SA; Shaw BP
    BMC Plant Biol; 2015 Dec; 15():301. PubMed ID: 26714456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media.
    Sekmen AH; Türkan I; Takio S
    Physiol Plant; 2007 Nov; 131(3):399-411. PubMed ID: 18251879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic adjustment in leaves of sorghum in response to water deficits.
    Jones MM
    Plant Physiol; 1978 Jan; 61(1):122-6. PubMed ID: 16660224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.