BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24241171)

  • 1. Insights on the structural characteristics of Vim-TBS (58-81) peptide for future applications as a cell penetrating peptide.
    Saini A; Jaswal RR; Negi R; Nandel FS
    Biosci Trends; 2013 Oct; 7(5):209-20. PubMed ID: 24241171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vimentin-tubulin binding site peptide (Vim-TBS.58-81) crosses the plasma membrane and enters the nuclei of human glioma cells.
    Balzeau J; Peterson A; Eyer J
    Int J Pharm; 2012 Feb; 423(1):77-83. PubMed ID: 21575694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sychnological cell penetrating peptide mimic of p21(WAF1/CIP1) is pro-apoptogenic.
    Baker RD; Howl J; Nicholl ID
    Peptides; 2007 Apr; 28(4):731-40. PubMed ID: 17287047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological activity of gold nanoparticles combined with the NFL-TBS.40-63 peptide, or with other cell penetrating peptides, on rat glioblastoma cells.
    Griveau A; Arib C; Spadavecchia J; Eyer J
    Int J Pharm X; 2022 Dec; 4():100129. PubMed ID: 36164551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group.
    Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H
    J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide.
    Kanwar JR; Gibbons J; Verma AK; Kanwar RK
    Anticancer Drugs; 2012 Jun; 23(5):471-82. PubMed ID: 22241171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NFL-TBS.40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis.
    Lépinoux-Chambaud C; Eyer J
    Int J Pharm; 2013 Oct; 454(2):738-47. PubMed ID: 23603097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular partners for interaction and cell internalization of cell-penetrating peptides: how identical are they?
    Walrant A; Bechara C; Alves ID; Sagan S
    Nanomedicine (Lond); 2012 Jan; 7(1):133-43. PubMed ID: 22191782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of amphipathic CPPs with model membranes.
    Deshayes S; Konate K; Aldrian G; Heitz F; Divita G
    Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides.
    Nakase I; Akita H; Kogure K; Gräslund A; Langel U; Harashima H; Futaki S
    Acc Chem Res; 2012 Jul; 45(7):1132-9. PubMed ID: 22208383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantiomer-specific bioactivities of peptidomimetic analogues of mastoparan and mitoparan: characterization of inverso mastoparan as a highly efficient cell penetrating peptide.
    Jones S; Howl J
    Bioconjug Chem; 2012 Jan; 23(1):47-56. PubMed ID: 22148546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of a series of novel amphipathic cell-penetrating peptides.
    Regberg J; Srimanee A; Erlandsson M; Sillard R; Dobchev DA; Karelson M; Langel U
    Int J Pharm; 2014 Apr; 464(1-2):111-6. PubMed ID: 24463071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells.
    Tünnemann G; Martin RM; Haupt S; Patsch C; Edenhofer F; Cardoso MC
    FASEB J; 2006 Sep; 20(11):1775-84. PubMed ID: 16940149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis.
    Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F
    Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide vectors for the nonviral delivery of nucleic acids.
    Hoyer J; Neundorf I
    Acc Chem Res; 2012 Jul; 45(7):1048-56. PubMed ID: 22455499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-penetrating helical peptides having l-arginines and five-membered ring α,α-disubstituted α-amino acids.
    Kato T; Oba M; Nishida K; Tanaka M
    Bioconjug Chem; 2014 Oct; 25(10):1761-8. PubMed ID: 25188671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.