These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24241182)

  • 1. A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis.
    Sang-aroon W; Amornkitbamrung V; Ruangpornvisuti V
    J Mol Model; 2013 Dec; 19(12):5501-13. PubMed ID: 24241182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on isomerization and peptide bond cleavage at aspartic residue.
    Sang-aroon W; Ruangpornvisuti V
    J Mol Model; 2013 Sep; 19(9):3627-36. PubMed ID: 23754169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Mimics of Aspartate-Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp-X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach.
    Ly HGT; Mihaylov TT; Proost P; Pierloot K; Harvey JN; Parac-Vogt TN
    Chemistry; 2019 Nov; 25(63):14370-14381. PubMed ID: 31469197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.
    Aki K; Okamura E
    J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides.
    Gu C; Tsaprailis G; Breci L; Wysocki VH
    Anal Chem; 2000 Dec; 72(23):5804-13. PubMed ID: 11128940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides.
    Oliyai C; Borchardt RT
    Pharm Res; 1994 May; 11(5):751-8. PubMed ID: 8058648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DFT calculation on nonenzymatic degradation of isoaspartic residue.
    Sang-Aroon W; Phatchana R; Tontapha S; Ruangpornvisuti V
    J Mol Model; 2021 Sep; 27(10):300. PubMed ID: 34570254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of isomerization and inversion of aspartate 58 of αA-crystallin peptide mimics under physiological conditions.
    Aki K; Fujii N; Fujii N
    PLoS One; 2013; 8(3):e58515. PubMed ID: 23505525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the enolization of succinimide derivatives, a key step of racemization of aspartic acid residues: importance of a two-H2O mechanism.
    Takahashi O; Kobayashi K; Oda A
    Chem Biodivers; 2010 Jun; 7(6):1349-56. PubMed ID: 20564551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bond-specific chemical cleavages of peptides and proteins with perfluoric acid vapors: novel peptide bond cleavages of glycyl-threonine, the amino side of serine residues and the carboxyl side of aspartic acid residues.
    Kawakami T; Kamo M; Takamoto K; Miyazaki K; Chow LP; Ueno Y; Tsugita A
    J Biochem; 1997 Jan; 121(1):68-76. PubMed ID: 9058194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartic acid side chain effect-experimental and theoretical insight.
    Rozman M
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):121-7. PubMed ID: 17049877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of the enolization in a direct mechanism of racemization of the aspartic acid residue.
    Takahashi O; Kobayashi K; Oda A
    Chem Biodivers; 2010 Jun; 7(6):1630-3. PubMed ID: 20564675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational studies on nonenzymatic succinimide-formation mechanisms of the aspartic acid residues catalyzed by two water molecules.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi H; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140459. PubMed ID: 32474105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism.
    Kirikoshi R; Manabe N; Takahashi O
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The estimation of glutaminyl deamidation and aspartyl cleavage rates in glucagon.
    Joshi AB; Kirsch LE
    Int J Pharm; 2004 Apr; 273(1-2):213-9. PubMed ID: 15010145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.