BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24241315)

  • 1. Effects of temperature at constant air dew point on leaf carboxylation efficiency and CO2 compensation point of different leaf types.
    Weber JA; Tenhunen JD; Lange OL
    Planta; 1985 Sep; 166(1):81-8. PubMed ID: 24241315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations due to water stress on leaf net photosynthesis of Quercus coccifera in the Portuguese evergreen scrub.
    Tenhunen JD; Lange OL; Harley PC; Beyschlag W; Meyer A
    Oecologia; 1985 Aug; 67(1):23-30. PubMed ID: 28309840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber.
    Tenhunen JD; Lange OL; Gebel J; Beyschlag W; Weber JA
    Planta; 1984 Sep; 162(3):193-203. PubMed ID: 24253090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity.
    Raschke K; Resemann A
    Planta; 1986 Sep; 168(4):546-58. PubMed ID: 24232332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration.
    Beyschlag W; Pfanz H; Ryel RJ
    Planta; 1992 Jul; 187(4):546-53. PubMed ID: 24178151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of photosynthetic photon flux density on carboxylation efficiency.
    Weber JA; Tenhunen JD; Gates DM; Lange OL
    Plant Physiol; 1987 Sep; 85(1):109-14. PubMed ID: 16665640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.
    Chandra S; Lata H; Khan IA; Elsohly MA
    Physiol Mol Biol Plants; 2008 Oct; 14(4):299-306. PubMed ID: 23572895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber).
    Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM
    Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature on the CO2/O 2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light : Estimates from gas-exchange measurements on spinach.
    Brooks A; Farquhar GD
    Planta; 1985 Aug; 165(3):397-406. PubMed ID: 24241146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning.
    Pons TL; Welschen RA
    Tree Physiol; 2003 Oct; 23(14):937-47. PubMed ID: 12952780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches.
    Warren CR; Dreyer E
    J Exp Bot; 2006; 57(12):3057-67. PubMed ID: 16882645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simulation on photosynthetic-CO
    Ren B; Li J; Tong XJ; Mu YM; Meng P; Zhang JS
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):1-10. PubMed ID: 29692006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves.
    Raschke K; Hedrich R
    Planta; 1985 Jan; 163(1):105-18. PubMed ID: 24249275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated CO2 decreases the Photorespiratory NH3 production but does not decrease the NH3 compensation point in rice leaves.
    Miyazawa S; Hayashi K; Nakamura H; Hasegawa T; Miyao M
    Plant Cell Physiol; 2014 Sep; 55(9):1582-91. PubMed ID: 24951312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber : II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex.
    Tenhunen JD; Lange OL; Braun M
    Oecologia; 1981 Aug; 50(1):5-11. PubMed ID: 28310056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum : Characterization of leaf and stem CO
    Osmond CB; Smith SD; Gui-Ying B; Sharkey TD
    Oecologia; 1987 Jul; 72(4):542-549. PubMed ID: 28312516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.