These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24241427)

  • 1. Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz.
    Sugiyama J; Harada H; Fujiyoshi Y; Uyeda N
    Planta; 1985 Oct; 166(2):161-8. PubMed ID: 24241427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The assembly of cellulose microfibrils in Valonia macrophysa Kütz.
    Itoh T; Brown RM
    Planta; 1984 Mar; 160(4):372-81. PubMed ID: 24258586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular imaging of halocynthia papillosa cellulose.
    Helbert W; Nishiyama Y; Okano T; Sugiyama J
    J Struct Biol; 1998 Dec; 124(1):42-50. PubMed ID: 9931272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cellulose microfibril as an imperfect array of elementary fibrils.
    Blackwell J; Kolpak FJ
    Macromolecules; 1975; 8(3):322-6. PubMed ID: 1152528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial microfibril arrangements in wood cell walls.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Planta; 2022 Sep; 256(4):75. PubMed ID: 36087126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal analysis and high-resolution imaging of microfibrillar α-chitin from Phaeocystis.
    Ogawa Y; Kimura S; Wada M; Kuga S
    J Struct Biol; 2010 Jul; 171(1):111-6. PubMed ID: 20350601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization.
    Himmelspach R; Williamson RE; Wasteneys GO
    Plant J; 2003 Nov; 36(4):565-75. PubMed ID: 14617086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Field Emission Scanning Electron Microscopy (FESEM) Imaging of Cellulose Microfibril Organization in Plant Primary Cell Walls.
    Zheng Y; Cosgrove DJ; Ning G
    Microsc Microanal; 2017 Oct; 23(5):1048-1054. PubMed ID: 28835298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril.
    Ogawa Y; Kimura S; Wada M
    J Struct Biol; 2011 Oct; 176(1):83-90. PubMed ID: 21771660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy.
    Reza M; Ruokolainen J; Vuorinen T
    Planta; 2014 Sep; 240(3):565-73. PubMed ID: 24965142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Measurement of Plant Cellulose Microfibril and Bundles in Native Cell Walls.
    Song B; Zhao S; Shen W; Collings C; Ding SY
    Front Plant Sci; 2020; 11():479. PubMed ID: 32391038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy.
    Abraham Y; Elbaum R
    New Phytol; 2013 Feb; 197(3):1012-1019. PubMed ID: 23240639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of cellulose microfibril deposition in the cell wall of higher plants : II. Freeze-fracture microfibril patterns in maize seedling tissues following experimental alteration with colchicine and ethylene.
    Mueller SC; Brown RM
    Planta; 1982 Jun; 154(6):501-15. PubMed ID: 24276345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa.
    Akkerman M; Franssen-Verheijen MA; Immerzeel P; Hollander LD; Schel JH; Emons AM
    J Microsc; 2012 Jul; 247(1):60-7. PubMed ID: 22458271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The size of the cellulose microfibril.
    COLVIN JR
    J Cell Biol; 1963 Apr; 17(1):105-9. PubMed ID: 14022465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils.
    Thimm JC; Burritt DJ; Ducker WA; Melton LD
    Planta; 2000 Dec; 212(1):25-32. PubMed ID: 11219580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of internal molecular torque results in twists of Glaucocystis cellulose nanofibers.
    Ogawa Y
    Carbohydr Polym; 2021 Jan; 251():117102. PubMed ID: 33142640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.
    Burk DH; Ye ZH
    Plant Cell; 2002 Sep; 14(9):2145-60. PubMed ID: 12215512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Atomic Force Microscopy of Native Valonia Cellulose I Microcrystals.
    Baker AA; Helbert W; Sugiyama J; Miles MJ
    J Struct Biol; 1997 Jul; 119(2):129-38. PubMed ID: 9245753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.