These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24241641)

  • 1. Experimental determination of the spatial scale of a prey patch from the predator's perspective.
    Birk MA; White JW
    Oecologia; 2014 Mar; 174(3):723-9. PubMed ID: 24241641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-dependent prey mortality is determined by the spatial scale of predator foraging.
    McCarthy EK; White JW
    Oecologia; 2016 Feb; 180(2):305-11. PubMed ID: 26116266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time to revisit? A predator's previous successes and failures in prey capture determine its return time to patches.
    Vijayan S; Lee JK; Balaban-Feld J; Mitchell WA; Kotler BP; Rosenzweig ML; Lotan TT; Abramsky Z
    Oecologia; 2019 Jun; 190(2):387-397. PubMed ID: 31147778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central-place foraging and ecological effects of an invasive predator across multiple habitats.
    Benkwitt CE
    Ecology; 2016 Oct; 97(10):2729-2739. PubMed ID: 27859117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A predator equalizes rate of capture of a schooling prey in a patchy environment.
    Vijayan S; Kotler BP; Abramsky Z
    Behav Processes; 2017 May; 138():91-95. PubMed ID: 28232233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental studies of evolution in guppies: a model for understanding the evolutionary consequences of predator removal in natural communities.
    Reznick DN; Ghalambor CK; Crooks K
    Mol Ecol; 2008 Jan; 17(1):97-107. PubMed ID: 17725576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foraging strategy mediates ectotherm predator-prey responses to climate warming.
    Twardochleb LA; Treakle TC; Zarnetske PL
    Ecology; 2020 Nov; 101(11):e03146. PubMed ID: 32726861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What do predators really want? The role of gerbil energetic state in determining prey choice by Barn Owls.
    Embar K; Mukherjee S; Kotler BP
    Ecology; 2014 Feb; 95(2):280-5. PubMed ID: 24669722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foraging behaviour and patch size distribution jointly determine population dynamics in fragmented landscapes.
    Nauta J; Simoens P; Khaluf Y; Martinez-Garcia R
    J R Soc Interface; 2022 Jun; 19(191):20220103. PubMed ID: 35730173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and turbidity interact synergistically to alter anti-predator behaviour in the Trinidadian guppy.
    Zanghi C; Munro M; Ioannou CC
    Proc Biol Sci; 2023 Jul; 290(2002):20230961. PubMed ID: 37403508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling the effects of predation and disturbance in a patchy environment.
    Lancaster J
    Oecologia; 1996 Aug; 107(3):321-331. PubMed ID: 28307260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wading bird foraging on a wetland landscape: a comparison of two strategies.
    Lee HW; DeAngelis DL; Yurek S; Tennenbaum S
    Math Biosci Eng; 2022 May; 19(8):7687-7718. PubMed ID: 35801441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic stoichiometry and the ecology of fear in Trinidadian guppies: consequences for life histories and stream ecosystems.
    Dalton CM; Flecker AS
    Oecologia; 2014 Nov; 176(3):691-701. PubMed ID: 25255854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey.
    Palkovacs EP; Wasserman BA; Kinnison MT
    PLoS One; 2011 Apr; 6(4):e18879. PubMed ID: 21526156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RISK-SENSITIVE ANTIPREDATOR BEHAVIOR IN THE TRINIDADIAN GUPPY, POECILIA RETICULATA.
    Botham MS; Hayward RK; Morrell LJ; Croft DP; Ward JR; Ramnarine I; Krause J
    Ecology; 2008 Nov; 89(11):3174-3185. PubMed ID: 31766795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of different predator species on antipredator behavior in the Trinidadian guppy, Poecilia reticulata.
    Botham MS; Kerfoot CJ; Louca V; Krause J
    Naturwissenschaften; 2006 Sep; 93(9):431-9. PubMed ID: 16896976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregative response in bats: prey abundance versus habitat.
    Müller J; Mehr M; Bässler C; Fenton MB; Hothorn T; Pretzsch H; Klemmt HJ; Brandl R
    Oecologia; 2012 Jul; 169(3):673-84. PubMed ID: 22218944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prey colonization in freshwater landscapes can be stimulated or inhibited by the proximity of remote predators.
    Turner B; Trekels H; Vandromme M; Vanschoenwinkel B
    J Anim Ecol; 2020 Aug; 89(8):1766-1774. PubMed ID: 32324914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding spatial distributions: negative density-dependence in prey causes predators to trade-off prey quantity with quality.
    Bijleveld AI; MacCurdy RB; Chan YC; Penning E; Gabrielson RM; Cluderay J; Spaulding EL; Dekinga A; Holthuijsen S; ten Horn J; Brugge M; van Gils JA; Winkler DW; Piersma T
    Proc Biol Sci; 2016 Apr; 283(1828):. PubMed ID: 27053747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Matador-like Predator Diversion Strategy Driven by Conspicuous Coloration in Guppies.
    Heathcote RJP; Troscianko J; Darden SK; Naisbett-Jones LC; Laker PR; Brown AM; Ramnarine IW; Walker J; Croft DP
    Curr Biol; 2020 Jul; 30(14):2844-2851.e8. PubMed ID: 32531279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.