These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 24241745)
1. Leaf senescence in a non-yellowing mutant of Festuca pratensis: Photosynthesis and photosynthetic electron transport. Hilditch P; Thomas H; Rogers L Planta; 1986 Jan; 167(1):146-51. PubMed ID: 24241745 [TBL] [Abstract][Full Text] [Related]
2. Leaf senescence in a non-yellowing mutant of Festuca pratensis: Proteins of photosystem II. Hilditch PI; Thomas H; Thomas BJ; Rogers LJ Planta; 1989 Feb; 177(2):265-72. PubMed ID: 24212349 [TBL] [Abstract][Full Text] [Related]
3. Ultrastructure, polypeptide composition and photochemical activity of chloroplasts during foliar senescence of a non-yellowing mutant genotype of Festuca pratensis Huds. Thomas H Planta; 1977 Jan; 137(1):53-60. PubMed ID: 24420518 [TBL] [Abstract][Full Text] [Related]
4. Leaf senescence in a non-yellowing mutant of Festuca pratensis Huds. : Oxidative chlorophyll bleaching by thylakoid membranes during senescence. Thomas H; Lüthy B; Matile P Planta; 1985 Jun; 164(3):400-5. PubMed ID: 24249611 [TBL] [Abstract][Full Text] [Related]
5. Immunochemical quantification of cytochrome f in leaves of a non-yellowing senescence mutant of Festuca pratensis. Davies TG; Thomas H; Rogers LJ Photosynth Res; 1990 Apr; 24(1):99-108. PubMed ID: 24419770 [TBL] [Abstract][Full Text] [Related]
6. Leaf senescence in a non-yellowing mutant of Festuca pratensis : I. Chloroplast membrane polypeptides. Thomas H Planta; 1982 May; 154(3):212-8. PubMed ID: 24276063 [TBL] [Abstract][Full Text] [Related]
7. Preservation of photosynthetic electron transport from senescence-induced inactivation in primary leaves after decapitation and defoliation of bean plants. Yordanov I; Goltsev V; Stefanov D; Chernev P; Zaharieva I; Kirova M; Gecheva V; Strasser RJ J Plant Physiol; 2008 Dec; 165(18):1954-63. PubMed ID: 18586352 [TBL] [Abstract][Full Text] [Related]
8. Nucleic acids from leaves of a yellowing and a non-yellowing variety of Festuca pratensis Huds. Pearson JA; Thomas K; Thomas H Planta; 1978 Jan; 144(1):85-7. PubMed ID: 24408648 [TBL] [Abstract][Full Text] [Related]
9. Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis. Thomas H Theor Appl Genet; 1987 Feb; 73(4):551-5. PubMed ID: 24241112 [TBL] [Abstract][Full Text] [Related]
10. Development of leaf photosynthetic parameters in Betula pendula Roth leaves: correlations with photosystem I density. Eichelmann H; Oja V; Rasulov B; Padu E; Bichele I; Pettai H; Niinemets U; Laisk A Plant Biol (Stuttg); 2004 May; 6(3):307-18. PubMed ID: 15143439 [TBL] [Abstract][Full Text] [Related]
11. Leaf senescence in a non-yellowing mutant of Festuca pratensis : III. Total acyl lipids of leaf tissue during senescence. Harwood JL; Jones AV; Thomas H Planta; 1982 Nov; 156(2):152-7. PubMed ID: 24272310 [TBL] [Abstract][Full Text] [Related]
12. Chlorophyll breakdown in senescent leaves identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. Vicentini F; Hörtensteiner S; Schellenberg M; Thomas H; Matile P New Phytol; 1995 Feb; 129(2):247-252. PubMed ID: 33874551 [TBL] [Abstract][Full Text] [Related]
13. Changes in Photosynthetic Electron Transport during Leaf Senescence in Two Barley Varieties Grown in Contrasting Growth Regimes. Shimakawa G; Roach T; Krieger-Liszkay A Plant Cell Physiol; 2020 Dec; 61(11):1986-1994. PubMed ID: 32886785 [TBL] [Abstract][Full Text] [Related]
14. Expression of Anabaena PCC 7937 plastocyanin in Synechococcus PCC 7942 enhances photosynthetic electron transfer and alters the electron distribution between photosystem I and cytochrome-c oxidase. Geerts D; Schubert H; de Vrieze G; Borrias M; Matthijs HC; Weisbeek PJ J Biol Chem; 1994 Nov; 269(45):28068-75. PubMed ID: 7961743 [TBL] [Abstract][Full Text] [Related]
15. Rate-Limiting Steps of Electron Transport in Chloroplasts during Ontogeny and Senescence of Barley. Holloway PJ; Maclean DJ; Scott KJ Plant Physiol; 1983 Jul; 72(3):795-801. PubMed ID: 16663087 [TBL] [Abstract][Full Text] [Related]
16. The retention of photosynthetic activity by senescing chloroplasts of oat leaves. Choe HT; Thimann KV Planta; 1977 Jan; 135(2):101-7. PubMed ID: 24420010 [TBL] [Abstract][Full Text] [Related]
17. The role of plastocyanin in the adjustment of the photosynthetic electron transport to the carbon metabolism in tobacco. Schöttler MA; Kirchhoff H; Weis E Plant Physiol; 2004 Dec; 136(4):4265-74. PubMed ID: 15563617 [TBL] [Abstract][Full Text] [Related]
18. Photosynthesis in Fescue: I. HIGH RATE OF ELECTRON TRANSPORT AND PHOSPHORYLATION IN CHLOROPLASTS OF HEXAPLOID PLANTS. Krueger RW; Miles D Plant Physiol; 1981 Apr; 67(4):763-7. PubMed ID: 16661751 [TBL] [Abstract][Full Text] [Related]
19. Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Allen JF; Pfannschmidt T Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1351-9. PubMed ID: 11127990 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of Linolenic Acid-induced Inhibition of Photosynthetic Electron Transport. Golbeck JH; Martin IF; Fowler CF Plant Physiol; 1980 Apr; 65(4):707-13. PubMed ID: 16661266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]