These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 24242947)
1. Negative-Ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique. Boumsellek S; Alajajian SH; Chutjian A J Am Soc Mass Spectrom; 1992 Mar; 3(3):243-7. PubMed ID: 24242947 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source. Habib A; Bi L; Wen L Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084 [TBL] [Abstract][Full Text] [Related]
3. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. Na N; Zhang C; Zhao M; Zhang S; Yang C; Fang X; Zhang X J Mass Spectrom; 2007 Aug; 42(8):1079-85. PubMed ID: 17618527 [TBL] [Abstract][Full Text] [Related]
4. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry. Hikal WM; Weeks BL Talanta; 2014 Jul; 125():24-8. PubMed ID: 24840410 [TBL] [Abstract][Full Text] [Related]
5. Rapid identification and desorption mechanisms of nitrogen-based explosives by ambient micro-fabricated glow discharge plasma desorption/ionization (MFGDP) mass spectrometry. Tian C; Yin J; Zhao Z; Zhang Y; Duan Y Talanta; 2017 May; 167():75-85. PubMed ID: 28340788 [TBL] [Abstract][Full Text] [Related]
6. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Cotte-Rodríguez I; Takáts Z; Talaty N; Chen H; Cooks RG Anal Chem; 2005 Nov; 77(21):6755-64. PubMed ID: 16255571 [TBL] [Abstract][Full Text] [Related]
7. Detection of explosives using a hollow cathode discharge ion source. Habib A; Chen LC; Usmanov DT; Yu Z; Hiraoka K Rapid Commun Mass Spectrom; 2015 Apr; 29(7):601-10. PubMed ID: 26212277 [TBL] [Abstract][Full Text] [Related]
8. Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization. Shahraki H; Tabrizchi M; Farrokhpor H J Hazard Mater; 2018 Sep; 357():1-9. PubMed ID: 29859459 [TBL] [Abstract][Full Text] [Related]
9. Novel molecular laser-induced photoluminscence signature with hyperspectral imaging for instant and remote detection of trace explosive materials. Elbasuney S; Mahmoud A; El-Sharkawy YH Talanta; 2024 Jan; 266(Pt 1):124978. PubMed ID: 37544253 [TBL] [Abstract][Full Text] [Related]
10. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources. Radauscher EJ; Keil AD; Wells M; Amsden JJ; Piascik JR; Parker CB; Stoner BR; Glass JT J Am Soc Mass Spectrom; 2015 Nov; 26(11):1903-10. PubMed ID: 26133527 [TBL] [Abstract][Full Text] [Related]
11. Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry. Kauppila TJ; Flink A; Pukkila J; Ketola RA Rapid Commun Mass Spectrom; 2016 Feb; 30(4):467-75. PubMed ID: 26777676 [TBL] [Abstract][Full Text] [Related]
12. Particle characteristics of trace high explosives: RDX and PETN. Verkouteren JR J Forensic Sci; 2007 Mar; 52(2):335-40. PubMed ID: 17316229 [TBL] [Abstract][Full Text] [Related]
13. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry. Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343 [TBL] [Abstract][Full Text] [Related]
14. Tandem Ion Mobility Spectrometry for the Detection of Traces of Explosives in Cargo at Concentrations of Parts Per Quadrillion. Amo-González M; Pérez S; Delgado R; Arranz G; Carnicero I Anal Chem; 2019 Nov; 91(21):14009-14018. PubMed ID: 31556599 [TBL] [Abstract][Full Text] [Related]
15. Ion Mobility Spectrometer-Fragmenter-Ion Mobility Spectrometer Analogue of a Triple Quadrupole for High-Resolution Ion Analysis at Atmospheric Pressure. Amo-González M; Carnicero I; Pérez S; Delgado R; Eiceman GA; Fernández de la Mora G; Fernández de la Mora J Anal Chem; 2018 Jun; 90(11):6885-6892. PubMed ID: 29694027 [TBL] [Abstract][Full Text] [Related]
16. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry. Kozole J; Levine LA; Tomlinson-Phillips J; Stairs JR Talanta; 2015 Aug; 140():10-19. PubMed ID: 26048817 [TBL] [Abstract][Full Text] [Related]
17. A systematic tandem mass spectrometric study of anion attachment for improved detection and acidity evaluation of nitrogen-rich energetic compounds. Gaiffe G; Bridoux MC; Costanza C; Cole RB J Mass Spectrom; 2018 Jan; 53(1):21-29. PubMed ID: 28960805 [TBL] [Abstract][Full Text] [Related]
18. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry. Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190 [TBL] [Abstract][Full Text] [Related]
19. Dissociative electron attachment to pentaerythritol tetranitrate: significant fragmentation near 0 eV. Edtbauer A; Sulzer P; Mauracher A; Mitterdorfer C; Ferreira da Silva F; Denifl S; Märk TD; Probst M; Nunes Y; Limão-Vieira P; Scheier P J Chem Phys; 2010 Apr; 132(13):134305. PubMed ID: 20387931 [TBL] [Abstract][Full Text] [Related]
20. Application of paper spray ionization for explosives analysis. Tsai CW; Tipple CA; Yost RA Rapid Commun Mass Spectrom; 2017 Oct; 31(19):1565-1572. PubMed ID: 28681982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]