These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24243020)

  • 1. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears.
    Sen M; Maillard RA; Nyquist K; Rodriguez-Aliaga P; Pressé S; Martin A; Bustamante C
    Cell; 2013 Oct; 155(3):636-646. PubMed ID: 24243020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate.
    Fei X; Bell TA; Jenni S; Stinson BM; Baker TA; Harrison SC; Sauer RT
    Elife; 2020 Feb; 9():. PubMed ID: 32108573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
    Aubin-Tam ME; Olivares AO; Sauer RT; Baker TA; Lang MJ
    Cell; 2011 Apr; 145(2):257-67. PubMed ID: 21496645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine.
    Cordova JC; Olivares AO; Shin Y; Stinson BM; Calmat S; Schmitz KR; Aubin-Tam ME; Baker TA; Lang MJ; Sauer RT
    Cell; 2014 Jul; 158(3):647-58. PubMed ID: 25083874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP.
    Miller JM; Lin J; Li T; Lucius AL
    J Mol Biol; 2013 Aug; 425(15):2795-812. PubMed ID: 23639359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ClpX shifts into high gear to unfold stable proteins.
    Maurizi MR; Stan G
    Cell; 2013 Oct; 155(3):502-4. PubMed ID: 24243009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistep substrate binding and engagement by the AAA+ ClpXP protease.
    Saunders RA; Stinson BM; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28005-28013. PubMed ID: 33106413
    [No Abstract]   [Full Text] [Related]  

  • 9. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease.
    Shin Y; Davis JH; Brau RR; Martin A; Kenniston JA; Baker TA; Sauer RT; Lang MJ
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19340-5. PubMed ID: 19892734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease.
    Nager AR; Baker TA; Sauer RT
    J Mol Biol; 2011 Oct; 413(1):4-16. PubMed ID: 21821046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
    Glynn SE; Nager AR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2012 May; 19(6):616-22. PubMed ID: 22562135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit.
    Too PH; Erales J; Simen JD; Marjanovic A; Coffino P
    J Biol Chem; 2013 May; 288(19):13243-57. PubMed ID: 23530043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanochemical basis of protein degradation by a double-ring AAA+ machine.
    Olivares AO; Nager AR; Iosefson O; Sauer RT; Baker TA
    Nat Struct Mol Biol; 2014 Oct; 21(10):871-5. PubMed ID: 25195048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turned on for degradation: ATPase-independent degradation by ClpP.
    Bewley MC; Graziano V; Griffin K; Flanagan JM
    J Struct Biol; 2009 Feb; 165(2):118-25. PubMed ID: 19038348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine.
    Stinson BM; Nager AR; Glynn SE; Schmitz KR; Baker TA; Sauer RT
    Cell; 2013 Apr; 153(3):628-39. PubMed ID: 23622246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.