These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24243035)

  • 1. miR-663 induces castration-resistant prostate cancer transformation and predicts clinical recurrence.
    Jiao L; Deng Z; Xu C; Yu Y; Li Y; Yang C; Chen J; Liu Z; Huang G; Li LC; Sun Y
    J Cell Physiol; 2014 Jul; 229(7):834-44. PubMed ID: 24243035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6).
    Liu D; Tao T; Xu B; Chen S; Liu C; Zhang L; Lu K; Huang Y; Jiang L; Zhang X; Huang X; Zhang L; Han C; Chen M
    Biochem Biophys Res Commun; 2014 Feb; 445(1):151-6. PubMed ID: 24491557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-19a regulates proliferation and apoptosis of castration-resistant prostate cancer cells by targeting BTG1.
    Lu K; Liu C; Tao T; Zhang X; Zhang L; Sun C; Wang Y; Chen S; Xu B; Chen M
    FEBS Lett; 2015 Jun; 589(13):1485-90. PubMed ID: 25936765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5.
    Gu P; Chen X; Xie R; Han J; Xie W; Wang B; Dong W; Chen C; Yang M; Jiang J; Chen Z; Huang J; Lin T
    Mol Ther; 2017 Aug; 25(8):1959-1973. PubMed ID: 28487115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer.
    Ren S; Liu Y; Xu W; Sun Y; Lu J; Wang F; Wei M; Shen J; Hou J; Gao X; Xu C; Huang J; Zhao Y; Sun Y
    J Urol; 2013 Dec; 190(6):2278-87. PubMed ID: 23845456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC.
    Arai T; Okato A; Yamada Y; Sugawara S; Kurozumi A; Kojima S; Yamazaki K; Naya Y; Ichikawa T; Seki N
    Cancer Med; 2018 May; 7(5):1988-2002. PubMed ID: 29608247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upregulation of miR-3195, miR-3687 and miR-4417 is associated with castration-resistant prostate cancer.
    Rönnau CGH; Fussek S; Smit FP; Aalders TW; van Hooij O; Pinto PMC; Burchardt M; Schalken JA; Verhaegh GW
    World J Urol; 2021 Oct; 39(10):3789-3797. PubMed ID: 33990872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer.
    Xu B; Wang N; Wang X; Tong N; Shao N; Tao J; Li P; Niu X; Feng N; Zhang L; Hua L; Wang Z; Chen M
    Prostate; 2012 Aug; 72(11):1171-8. PubMed ID: 22161865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets.
    Rane JK; Scaravilli M; Ylipää A; Pellacani D; Mann VM; Simms MS; Nykter M; Collins AT; Visakorpi T; Maitland NJ
    Eur Urol; 2015 Jan; 67(1):7-10. PubMed ID: 25234358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2.
    Scaravilli M; Porkka KP; Brofeldt A; Annala M; Tammela TL; Jenster GW; Nykter M; Visakorpi T
    Prostate; 2015 Jun; 75(8):798-805. PubMed ID: 25731699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker.
    Goto Y; Kojima S; Nishikawa R; Kurozumi A; Kato M; Enokida H; Matsushita R; Yamazaki K; Ishida Y; Nakagawa M; Naya Y; Ichikawa T; Seki N
    Br J Cancer; 2015 Sep; 113(7):1055-65. PubMed ID: 26325107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer.
    Okato A; Goto Y; Kurozumi A; Kato M; Kojima S; Matsushita R; Yonemori M; Miyamoto K; Ichikawa T; Seki N
    Int J Oncol; 2016 Jul; 49(1):111-22. PubMed ID: 27212625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Expression of a Panel of Ten CNTN1-Associated Genes during Prostate Cancer Progression and the Predictive Properties of the Panel Towards Prostate Cancer Relapse.
    Gu Y; Chow MJ; Kapoor A; Lin X; Mei W; Tang D
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33578925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating miR-6880-5p in extracellular vesicle from plasma as a prognostic biomarker in endocrine therapy-treated castration-resistant prostate cancer.
    Lee J; Hong J; Kim JW; Lim S; Choi SC; Gim JA; Kang SG; Noh TI; Park KH
    BMC Cancer; 2024 Jul; 24(1):909. PubMed ID: 39075471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth.
    Zhu YP; Wan FN; Shen YJ; Wang HK; Zhang GM; Ye DW
    Oncotarget; 2015 Jun; 6(16):14488-96. PubMed ID: 25895032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer.
    Jalava SE; Urbanucci A; Latonen L; Waltering KK; Sahu B; Jänne OA; Seppälä J; Lähdesmäki H; Tammela TL; Visakorpi T
    Oncogene; 2012 Oct; 31(41):4460-71. PubMed ID: 22266859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer.
    Li T; Li RS; Li YH; Zhong S; Chen YY; Zhang CM; Hu MM; Shen ZJ
    J Urol; 2012 Apr; 187(4):1466-72. PubMed ID: 22341810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model.
    Terada N; Shimizu Y; Kamba T; Inoue T; Maeno A; Kobayashi T; Nakamura E; Kamoto T; Kanaji T; Maruyama T; Mikami Y; Toda Y; Matsuoka T; Okuno Y; Tsujimoto G; Narumiya S; Ogawa O
    Cancer Res; 2010 Feb; 70(4):1606-15. PubMed ID: 20145136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition.
    Coppola V; Musumeci M; Patrizii M; Cannistraci A; Addario A; Maugeri-Saccà M; Biffoni M; Francescangeli F; Cordenonsi M; Piccolo S; Memeo L; Pagliuca A; Muto G; Zeuner A; De Maria R; Bonci D
    Oncogene; 2013 Apr; 32(14):1843-53. PubMed ID: 22614007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of miR-378 in prostate cancer, a common regulator of KLK2 and KLK4, correlates with aggressive disease phenotype and predicts the short-term relapse of the patients.
    Avgeris M; Stravodimos K; Scorilas A
    Biol Chem; 2014 Sep; 395(9):1095-104. PubMed ID: 25153390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.