BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24243035)

  • 1. miR-663 induces castration-resistant prostate cancer transformation and predicts clinical recurrence.
    Jiao L; Deng Z; Xu C; Yu Y; Li Y; Yang C; Chen J; Liu Z; Huang G; Li LC; Sun Y
    J Cell Physiol; 2014 Jul; 229(7):834-44. PubMed ID: 24243035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6).
    Liu D; Tao T; Xu B; Chen S; Liu C; Zhang L; Lu K; Huang Y; Jiang L; Zhang X; Huang X; Zhang L; Han C; Chen M
    Biochem Biophys Res Commun; 2014 Feb; 445(1):151-6. PubMed ID: 24491557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-19a regulates proliferation and apoptosis of castration-resistant prostate cancer cells by targeting BTG1.
    Lu K; Liu C; Tao T; Zhang X; Zhang L; Sun C; Wang Y; Chen S; Xu B; Chen M
    FEBS Lett; 2015 Jun; 589(13):1485-90. PubMed ID: 25936765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5.
    Gu P; Chen X; Xie R; Han J; Xie W; Wang B; Dong W; Chen C; Yang M; Jiang J; Chen Z; Huang J; Lin T
    Mol Ther; 2017 Aug; 25(8):1959-1973. PubMed ID: 28487115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer.
    Ren S; Liu Y; Xu W; Sun Y; Lu J; Wang F; Wei M; Shen J; Hou J; Gao X; Xu C; Huang J; Zhao Y; Sun Y
    J Urol; 2013 Dec; 190(6):2278-87. PubMed ID: 23845456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC.
    Arai T; Okato A; Yamada Y; Sugawara S; Kurozumi A; Kojima S; Yamazaki K; Naya Y; Ichikawa T; Seki N
    Cancer Med; 2018 May; 7(5):1988-2002. PubMed ID: 29608247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upregulation of miR-3195, miR-3687 and miR-4417 is associated with castration-resistant prostate cancer.
    Rönnau CGH; Fussek S; Smit FP; Aalders TW; van Hooij O; Pinto PMC; Burchardt M; Schalken JA; Verhaegh GW
    World J Urol; 2021 Oct; 39(10):3789-3797. PubMed ID: 33990872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer.
    Xu B; Wang N; Wang X; Tong N; Shao N; Tao J; Li P; Niu X; Feng N; Zhang L; Hua L; Wang Z; Chen M
    Prostate; 2012 Aug; 72(11):1171-8. PubMed ID: 22161865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets.
    Rane JK; Scaravilli M; Ylipää A; Pellacani D; Mann VM; Simms MS; Nykter M; Collins AT; Visakorpi T; Maitland NJ
    Eur Urol; 2015 Jan; 67(1):7-10. PubMed ID: 25234358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2.
    Scaravilli M; Porkka KP; Brofeldt A; Annala M; Tammela TL; Jenster GW; Nykter M; Visakorpi T
    Prostate; 2015 Jun; 75(8):798-805. PubMed ID: 25731699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker.
    Goto Y; Kojima S; Nishikawa R; Kurozumi A; Kato M; Enokida H; Matsushita R; Yamazaki K; Ishida Y; Nakagawa M; Naya Y; Ichikawa T; Seki N
    Br J Cancer; 2015 Sep; 113(7):1055-65. PubMed ID: 26325107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer.
    Okato A; Goto Y; Kurozumi A; Kato M; Kojima S; Matsushita R; Yonemori M; Miyamoto K; Ichikawa T; Seki N
    Int J Oncol; 2016 Jul; 49(1):111-22. PubMed ID: 27212625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Expression of a Panel of Ten CNTN1-Associated Genes during Prostate Cancer Progression and the Predictive Properties of the Panel Towards Prostate Cancer Relapse.
    Gu Y; Chow MJ; Kapoor A; Lin X; Mei W; Tang D
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33578925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth.
    Zhu YP; Wan FN; Shen YJ; Wang HK; Zhang GM; Ye DW
    Oncotarget; 2015 Jun; 6(16):14488-96. PubMed ID: 25895032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer.
    Jalava SE; Urbanucci A; Latonen L; Waltering KK; Sahu B; Jänne OA; Seppälä J; Lähdesmäki H; Tammela TL; Visakorpi T
    Oncogene; 2012 Oct; 31(41):4460-71. PubMed ID: 22266859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer.
    Li T; Li RS; Li YH; Zhong S; Chen YY; Zhang CM; Hu MM; Shen ZJ
    J Urol; 2012 Apr; 187(4):1466-72. PubMed ID: 22341810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model.
    Terada N; Shimizu Y; Kamba T; Inoue T; Maeno A; Kobayashi T; Nakamura E; Kamoto T; Kanaji T; Maruyama T; Mikami Y; Toda Y; Matsuoka T; Okuno Y; Tsujimoto G; Narumiya S; Ogawa O
    Cancer Res; 2010 Feb; 70(4):1606-15. PubMed ID: 20145136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition.
    Coppola V; Musumeci M; Patrizii M; Cannistraci A; Addario A; Maugeri-Saccà M; Biffoni M; Francescangeli F; Cordenonsi M; Piccolo S; Memeo L; Pagliuca A; Muto G; Zeuner A; De Maria R; Bonci D
    Oncogene; 2013 Apr; 32(14):1843-53. PubMed ID: 22614007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer.
    Goto Y; Kurozumi A; Arai T; Nohata N; Kojima S; Okato A; Kato M; Yamazaki K; Ishida Y; Naya Y; Ichikawa T; Seki N
    Br J Cancer; 2017 Jul; 117(3):409-420. PubMed ID: 28641312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of miR-378 in prostate cancer, a common regulator of KLK2 and KLK4, correlates with aggressive disease phenotype and predicts the short-term relapse of the patients.
    Avgeris M; Stravodimos K; Scorilas A
    Biol Chem; 2014 Sep; 395(9):1095-104. PubMed ID: 25153390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.