These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24243201)

  • 1. Genome walking.
    Shapter FM; Waters DL
    Methods Mol Biol; 2014; 1099():133-46. PubMed ID: 24243201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genome walking strategy for the identification of nucleotide sequences adjacent to known regions.
    Wang H; Yao T; Cai M; Xiao X; Ding X; Xia L
    Biotechnol Lett; 2013 Feb; 35(2):279-84. PubMed ID: 23108875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput genome-walking method and its use for cloning unknown flanking sequences.
    Reddy PS; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    Anal Biochem; 2008 Oct; 381(2):248-53. PubMed ID: 18674512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome walking of large fragments: an improved method.
    Rishi AS; Nelson ND; Goyal A
    J Biotechnol; 2004 Jul; 111(1):9-15. PubMed ID: 15196765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequencing a genome by walking with clone-end sequences: a mathematical analysis.
    Batzoglou S; Berger B; Mesirov J; Lander ES
    Genome Res; 1999 Dec; 9(12):1163-74. PubMed ID: 10613838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique.
    Acevedo JP; Reyes F; Parra LP; Salazar O; Andrews BA; Asenjo JA
    J Biotechnol; 2008 Feb; 133(3):277-86. PubMed ID: 18055055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vectorettes for long chromosome walking in genomic DNA of the human p53 gene.
    Laitinen J; Räkköläinen T; Hölttä E
    Biotechniques; 2004 Oct; 37(4):674-6, 678. PubMed ID: 15517980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A-T linker adapter polymerase chain reaction for determining flanking sequences by rescuing inverse PCR or thermal asymmetric interlaced PCR products.
    Trinh Q; Zhu P; Shi H; Xu W; Hao J; Luo Y; Huang K
    Anal Biochem; 2014 Dec; 466():24-6. PubMed ID: 25086366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolating promoters of multigene family members from the polyploid sugarcane genome by PCR-based walking in BAC DNA.
    Damaj MB; Beremand PD; Buenrostro-Nava MT; Ivy J; Kumpatla SP; Jifon J; Beyene G; Yu Q; Thomas TL; Mirkov TE
    Genome; 2010 Oct; 53(10):840-7. PubMed ID: 20962891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal fast walking applied to cDNA.
    Park DJ; Renfree MB; Marshall Graves JA
    Prep Biochem Biotechnol; 2004 May; 34(2):123-33. PubMed ID: 15195707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning.
    Wang Z; Ye S; Li J; Zheng B; Bao M; Ning G
    BMC Biotechnol; 2011 Nov; 11():109. PubMed ID: 22093809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic sequence sampling: a strategy for high resolution sequence-based physical mapping of complex genomes.
    Smith MW; Holmsen AL; Wei YH; Peterson M; Evans GA
    Nat Genet; 1994 May; 7(1):40-7. PubMed ID: 8075638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-blocking PCR: an advanced PCR technique for genome walking.
    Bae JH; Sohn JH
    Anal Biochem; 2010 Mar; 398(1):112-6. PubMed ID: 19903447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress of the PCR amplification techniques for chromosome walking].
    Liu B; Su Q; Tang MQ; Yuan XD; An LJ
    Yi Chuan; 2006 May; 28(5):587-95. PubMed ID: 16735240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling circle amplification of genomic templates for inverse PCR (RCA-GIP): a method for 5'- and 3'-genome walking without anchoring.
    Tsaftaris A; Pasentzis K; Argiriou A
    Biotechnol Lett; 2010 Jan; 32(1):157-61. PubMed ID: 19760115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.
    Quail MA; Matthews L; Sims S; Lloyd C; Beasley H; Baxter SW
    Methods Mol Biol; 2011; 772():59-81. PubMed ID: 22065432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3' RACE walking along a large cDNA employing tiered suppression PCR.
    Park DJ; Pask AJ; Renfree MB; Graves JA
    Biotechniques; 2003 Apr; 34(4):750-2, 754-6. PubMed ID: 12703300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method to perform genomic walks using a combination of single strand DNA circularization and rolling circle amplification.
    Gadkar VJ; Filion M
    J Microbiol Methods; 2011 Oct; 87(1):38-43. PubMed ID: 21777627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-formed adaptor PCR: a simple and efficient method for chromosome walking.
    Wang S; He J; Cui Z; Li S
    Appl Environ Microbiol; 2007 Aug; 73(15):5048-51. PubMed ID: 17483260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.